Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T16:29:25.109Z Has data issue: false hasContentIssue false

Perovskite, loparite and Ba-Fe hollandite from the Schryburt Lake carbonatite complex, northwestern Ontario, Canada

Published online by Cambridge University Press:  05 July 2018

R. Garth Platt*
Affiliation:
Department of Geology, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1

Abstract

Within a suite of felsic-free, mica-rich alkaline ultramafic rocks of the Schryburt Lake carbonatite complex of northwestern Ontario, loparite and Ba-Fe hollandite occur in intimate association with perovskite. The host rocks have variable modal proportions of Mg-olivine, phlogopite, magnetite, ilmenite, apatite and carbonate (generally calcite) with minor Mg-salite. Thus, they correspond to ultramafic lamprophyres (i.e. aillikites), in the sense of Rock (1990) or the lamprophyric facies of the melilitite clan, in the sense of Mitchell (1993).

Perovskite is the principal titanate phase, forming both euhedral and anhedral grains, the latter showing evidence of marginal resorption. It exhibits complex zonal patterns due principally to variations in the light rare earth elements, Na and Nb. In the nomenclature suggested, they may be termed perovskite and cerian perovskite. Loparite forms as small euhedral overgrowths on corroded perovskite cores. Chemically they are essentially solid solutions of loparite, lueshite and perovskite. Consequently, they may be termed calcian-loparite, calcian niobian loparite, niobian calcian loparite, loparite and niobian loparite. Titanates of the hollandite group are rare accessory minerals whose composition closely approach that of the septatitanate BaFe2+Ti7O16.

The complex zoning of the perovskite grains has been attributed to the periodic introduction of carbonatite-derived fluids enriched in REE, Na and Nb into the silicate system during perovskite crystallization. Subsequent reaction of the early perovskite with F-bearing fluids leads to a localized environment enriched in Ti, Na, Nb and REE derived from both the fluid phase and the unstable perovskite. Loparite subsequently crystallizes from these micro-chemical environments.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayliss, P. and Levinson, A. A. (1988) A system of nomenclature for rare-earth mineral species: Revision and extension. Amer. Mineral, 73, 422–3.Google Scholar
Fleischer, M. and Mandarino, J. A. (1991) Glossary of mineral species, 6th edn. Mineralogical Record, Tucson, Arizona, 256 pp.Google Scholar
Haggerty, S. E. and Mariano, A. N. (1983) Strontian loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Parana Basin Carbonatites, South America. Contrib. Mineral. Petrol., 84, 365-81.Google Scholar
Higgins, C. S. (1977) Petrography and petrology of the Schryburt Lake carbonatite intrusion. Unpublished B.S.c. thesis, Carleton University, Ottawa, Canada, 50 pp.Google Scholar
Jago, B., Gittins, J., and Beckett, M. F. (1993) Fluorine control of niobium and phosphorous mineral crystallization in carbonatite magmas. J. Geol. Soc. South Africa (in press).Google Scholar
Kravchenko, S. M. and Vlasova, E. V. (1959) Rare-metal mineralization connected with nepheline syenites of the Central Aldan alkali province. Dan SSSR, 128, (in Russian).Google Scholar
Le Bas, M. J. (1977) Carbonatite-nephelinite volcanism. Wiley, Chiechester, 347 pp.Google Scholar
McMillan, D. J., Baughman, G. D., and Schamber (1985) Experience with multiple least squares fitting with derivatives. In Microbeam Analysis (Armstrong, J. T., ed.). San Francisco Press, 137-40.Google Scholar
Mitchell, R. H. (1992) Accessory rare earth, strontium, barium and zironium minerals in the Benfontein and Wesselton calcite kimberlites, South Africa. In Proc. 5th. Internat. Kimberlite Conf. (Meyer, H. O. A. and Leonardos, O. H., eds). Campanhia de Pesquisa de Recursos Minerais, Rio de Janeiro, Brazil (in press).Google Scholar
Mitchell, R. H. (1993) The lamprophyre fades (in press Mineral. Petrol). Google Scholar
Mitchell, R. H. and Bergman (1991) Petrology of Lamproites. Plenum Press, New York, 447pp.Google Scholar
Mitchell, R. H. and Meyer, H. O. A. (1989) Niobian K-Ba-V titanates from micaceous kimberlite, Star Mine, Orange Free State, South Africa. Mineral. Mag., 53,451-6.Google Scholar
Mitchell, R. H. and Vladykin, N. V. (1993) Rare earth element-bearing tausonite and potassium barium titanates from the Little Murun potassic alkaline complex, Yakutia, Russia. Mineral. Mag., 57, 649–62.CrossRefGoogle Scholar
Rock, N. M. S. (1990) Lamprophyres. Blackie and Son Ltd., London.Google Scholar
Sage, R. P. (1987) Geology of carbonatite-alkalic rock complexes in Ontario: Big Beaver House Carbonatite Complex, District of Kenora. Ont. Geol. Surv. Study 51, 71pp.Google Scholar
Sage, R. P. (1988) Geology of carbonatite-alkalic rock complexes in Ontario: Schryburt Lake Carbonatite Complex, District of Kenora. Ont. Geol. Surv. Study 50, 43pp.Google Scholar
Veksler, I. V. and Teptelev, M. P. (1990) Conditions for crystallization and concentration of perovskite-type minerals in alkaline magmas. Lithos, 26, 177–89.CrossRefGoogle Scholar
Vlasov, K. A. (1966) Geochemistry and mineralogy of rare elements and genetic types of their deposits. Vol.11: Mineralogy of rare elements. Israel Program for Scientific Translations. Jerusalem, 945pp.Google Scholar
Vlasov, K. A., Kuz'Menko, M. Z., and Es'Kova, E. M. (1966) The Lovozero Alkali Massif. Oliver and Boyd Ltd., Edinburgh, 627pp.Google Scholar
Woolley, A. R. and Kempe, D. R. C. (1989) Carbonatites: Nomenclasture, average chemical compositions, and element distribution. In Carbonatites Genesis and Evolution (Bell, K., ed.) Unwin Hyman, London, 618pp.Google Scholar
Zhuravleva, L. N., Yukina, K. V., and Ryabeva, E. G. (1978) Praiderit, Pyervaya nakhodka v SSSR. (Priderite, first find in the USSR). Doklady Akad. Nauk SSSR , 239, 435-8 (translated a. Doklady Akad. Nauk SSSR, 239, 141–3.Google Scholar