Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T09:52:54.459Z Has data issue: false hasContentIssue false

Palladium arsenide-antimonides from habira, Minas Gerais, Brazil

Published online by Cambridge University Press:  05 July 2018

A. M. Clark
Affiliation:
Dept. of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD
A. J. Criddle
Affiliation:
Dept. of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD
E. E. Fejer
Affiliation:
Dept. of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD

Summary

The arsenopalladinite concentrates from Itabira, Minas Gerais, Brazil, have been found to contain three arsenide-antimonides of palladium, namely arsenopalladinite, atheneïte, and isomertieite. The second and third of these are new minerals.

Arsenopalladinite, redefined, is Pd5(As,Sb)2 and triclinic with a 7·399, b 14·063, c 7·352 Å, α 92° 03′, β 118° 57′, γ 95° 54′. Z = 6. Dmeas = 10·4, Dcalc = 10sd46. In reflected light arsenopalladinite is white with a yellowish creamy hue. The mineral shows complex polysynthetic twinning and is strongly anisotropic. Reflectance measurements at 470, 546, 589, and 650 nm respectively gave: in air, 46·67–48·86, 49·97–52·90, 52·82–54·96, and 55·61–57·72 in oil, 32·30–35·07, 37·12–39·40, 38·97–41·32, and 40·28–43·07. VHN100 379–449, av. 407.

Atheneïte, (Pd, Hg)3As, is hexagonal, space group P6/mmm and cell dimensions a 6·798, c 3·483 Å. The strongest lines of the powder pattern are 2·423 vvs (111) , 2·246 vs (201), 1·371 s (212), 1·302 s (302), 1·259 s (321). Z =2. Dcalc = 10·16. In reflected light atheneïte is white with a faint bluish tint compared to arsenopalladinite. Anisotropy distinct. Untwinned. Reflectivities for the two grains examined are: in air, 470 nm 47·51–54·75, 47·43–51·18; 546 nm 50·79–58·01, 51·36–54·36; 589 nm 53·13–61·01, 53·24–55·86; 650 nm 55·94–63·13, 54·76–56·77; in oil, 470 nm 30·03–43·67, 33·46–37·31; 546 nm 33·42–47·75, 37·64–41·07; 589 nm 35·80–49·04, 39·40–42·24; 650 nm 38·25–50·49, 41·07–42·85. VHN100 419–442, av. 431.

Isomertieite, (Pd,Cu)5(Sb,As)2, is cubic, space group Fd3m, a 12·283 Å. The strongest lines of the powder pattern are 2·356 vs (333, 511), 2·167 vvs (440), 0·8599 s (10.10.2, 14.2.2), 0·8206 s (12.8.4), 0·7996 s (10.10.6, 14.6.2), 0·7881 s (999, 1.11.1, 13·7·5, 15·3·3), 0·7801 s (12.10.2, 14.6.4). Z = 16. Dcalc = 10·33. In reflected light isomertieite is a pale yellow colour. One grain was isotropic, three others displayed weak anisotropy. Untwinned. Reflectance measurements at 470, 546, 589, and 650 nm gave respectively: in air, 44·74–46·46, 52·23–53·25, 55·05-57·49, 56·97–62·03; in oil, 31·04–31·40, 38·42–38·90, 40·80–42·16, and 42·91–45·63. VHN100 587–597, av. 592.

Quantitative colour values are also given, and the chemical and optical properties are compared with the related mineral, stibiopalladinite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, (H. R.), 1927. Journ. Chem. Metall. Min. Soc. S. Afr., 27, 249–50.Google Scholar
Bowie, (S. H. U.) and Taylor, (K.), 1958. Mining Mag. 99,, 265-77 [M.A. 14, 105].Google Scholar
Cabri, (L. J.), 1972. Min. Sci. Eng., 4, 3–29 [M.A. 73-736].Google Scholar
Claringbull, (G. F.) and HEY, (M. H.), 1956. Min. Mag., 31, lvii.Google Scholar
Claringbull, (G. F.) and HEY, (M. H.) 1957. Min. Abstr., 13, 237.Google Scholar
Desborough, (G. A.), Finney, (J. J.), and Leonard, (B. F.), 1973. Amer. Min., 58, I-Io [M.A. 73-2946].Google Scholar
Genkin, (A. D.) , 1968. Minerals of the platinum metals and their associations in th copper-nickel ores of the Noril'sk deposits.Acad. Sci. U.S.S.R., Moscow.Google Scholar
[Genkin, (A. D.), Evstigneeva, (T. L.), Vyal'sov, (L. N.), Laputina, (I. P.), and Troneva, (N. V.)], , (Geol. Ore Deposits),no. 5, 63-8.Google Scholar
Hardy, (A. C.), 1936. In Handbook of Colorimetry. Techn. Press, Mass. Inst. Techn.Google Scholar
Htein, (W.) and Phillips, (R.), 1973. Mineralogy and materials news bulletin for quantitative microscopic methods,, 1-3, 58.Google Scholar
Johnson, (P. N.) and Lampadius, (W. A.), 1837. Journ.prakt. Chem., 11, 309-15.Google Scholar
Mason, (P. K.), Frost, (M. T.), and Reed, (S. J. B.), 1969. Nat. Phys. Lab. LM.S. Rep. I.Google Scholar
Piller, (H.), 1966. Min. Depos., 1, 175-92.Google Scholar
Saini, (G. S.), Calvert, (L. D.), Heyding, (R. D.), and Taylor, (J. B.), 1964. Canad. Journ. Chem., 42, 620-9.CrossRefGoogle Scholar
Saini, (G. S.), Calvert, (L. D.), Heyding, (R. D.), and Taylor, (J. B.), and Taylor, (J. B.), 1964. Ibid. 42, 1511–17.CrossRefGoogle Scholar
Stompel, (E. F.) and Tarkian, (M.), 1974. Min. Mag., 39, 525–7.Google Scholar