Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T09:37:55.046Z Has data issue: false hasContentIssue false

Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania

Published online by Cambridge University Press:  14 December 2020

Anatoly N. Zaitsev*
Affiliation:
Department of Mineralogy, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia Imaging and Analysis Centre, Department of Earth Sciences, The Natural History Museum, Cromwell Road, SW7 5BD, UK
John Spratt
Affiliation:
Imaging and Analysis Centre, Department of Earth Sciences, The Natural History Museum, Cromwell Road, SW7 5BD, UK
Alexander G. Shtukenberg
Affiliation:
Department of Chemistry, New York University, 100 Washington Square East, New York, NY10003, USA
Andrei A. Zolotarev
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia
Sergey V. Petrov
Affiliation:
Department of Mineral Deposits, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia
Alina V. Kuptsova
Affiliation:
Department of Regional Geology, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia
Anton V. Antonov
Affiliation:
A.P. Karpinsky Russian Geological Research Institute, Sredny Pr. 74, St. Petersburg, 199106, Russia
*
*Author for correspondence: Anatoly N. Zaitsev, Email: a.zaitsev@spbu.ru

Abstract

The Quaternary carbonatite–nephelinite Kerimasi volcano is located within the Gregory rift in northern Tanzania. It is composed of nephelinitic and carbonatitic pyroclastic rocks, tuffs, tuff breccias and pyroclastic breccias, which contain blocks of different plutonic (predominantly ijolite) and volcanic (predominantly nephelinite) rocks including carbonatites. The plutonic and volcanic carbonatites both contain calcite as the major mineral with variable amounts of magnetite or magnesioferrite, apatite and forsterite. Carbonatites also contain accessory baddeleyite, kerimasite, pyrochlore and calzirtite. Zr and Nb minerals are rarely observed in rock samples, though they are abundant in eluvial deposits of carbonatite tuff/pyroclastic breccias in the Loluni and Kisete craters. Pyrochlore, ideally (CaNa)Nb2O6F, occurs as octahedral and cubo-octahedral crystals up to 300 μm in size. Compositionally, pyrochlore from Loluni and Kisete differs. The former is enriched in U (up to 19.4 wt.% UO2), light rare earth elements (up to 8.3 wt.% LREE2O3) and Zr (up to 14.4 wt.% ZrO2), and the latter contains elevated Ti (up to 7.3 wt.% TiO2). All the crystals investigated were crystalline, including those with high U content (a = 10.4152(1) Å for Loluni and a = 10.3763(1) Å for Kisete crystals). They have little or no subsolidus alteration nor low-temperature cation exchange (A-site vacancy up to 1.5% of the site), and are suitable for single-crystal X-ray diffraction analysis (R1 = 0.0206 and 0.0290; for all independent reflections for Loluni and Kisete crystals, respectively). Observed variations in the pyrochlore composition, particularly Zr content, from the Loluni and Kisete craters suggest crystallisation from compositionally different carbonatitic melts. The majority of pyrochlore crystals studied exhibit exceptionally well-preserved oscillatory- and sometimes sector-type zoning. The preferential incorporation of smaller and higher charged elements into more geometrically constrained sites on the growing surfaces explains the formation of the sector zoning. The oscillatory zoning can be rationalised by considering convectional instabilities of carbonatite magmas during their emplacement.

Type
Article – Gregory Yu. Ivanyuk memorial issue
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is part of a thematic set ‘Alkaline Rocks’ in memory of Dr Gregory Yu. Ivanyuk

Associate Editor: Daniel Atencio

References

Albarede, F. and Bottinga, Y. (1972) Kinetic disequilibrium in trace element partitioning between phenocryst and host lava. Geochimica et Cosmochimica Acta, 36, 141156.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Belyatsky, B.V., Lepekhina, E.N., Antonov, A.V., Rodionov, N.V., Nedosekova, I.L., Petrov, O.V., Shevchenko, S.S. and Sergeev, S.A. (2018) The age of Nb rare-metal mineralization of the Ilmeny–Vishnevogorsky alkaline complex (South Urals). Doklady Earth Sciences, 481, 10791085.CrossRefGoogle Scholar
Bonazzi, P., Bindi, L., Zoppi, M., Capitani, G.C. and Olmi, F. (2006) Single-crystal diffraction and transmission electron microscopy studies of “silicified” pyrochlore from Narssârssuk, Julianehaab district, Greenland. American Mineralogist, 91, 794801.CrossRefGoogle Scholar
Cámara, F., Williams, C.N., Della Ventura, G., Oberti, R. and Caprilli, E. (2004) Non-metamict betafite from Le Carcarelle (Vico volcanic complex, Italy): occurrence and crystal structure. Mineralogical Magazine, 68, 939950.Google Scholar
Caprilli, E., Della Ventura, G., Williams, T.C., Parodi, G.C. and Tucceimeu, P. (2006) The crystal chemistry of non-metamict pyrochlore-group minerals from Latium, Italy. The Canadian Mineralogist, 44, 13671378.CrossRefGoogle Scholar
Černý, P., Hawthorne, F.C., Laflamme, J.H.G. and Hinthorne, J.R. (1979) Stibiobetafite, a new member of the pyrochlore group from Vezná, Czechoslovakia. The Canadian Mineralogist, 17, 583588.Google Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (1999) Calcite-amphibole-clinopyroxene rock from the Afrikanda Complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites: I, oxide minerals. The Canadian Mineralogist, 37, 177198.Google Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (2002) New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. European Journal of Mineralogy, 14, 821836.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Williams, C.T. (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. Pp. 293340 in: Phoscorites and Carbonatites From Mantle to Mine: The Key Example of the Kola Alkaline Province (Wall, F. and Zaitsev, A.N., editors). The Mineralogical Society Series 10. Mineralogical Society of Great Britain and Ireland, London.Google Scholar
Chakhmouradian, A.R., Halden, N.M., Mitchell, R.H. and Horváth, L. (2007) Rb-Cs-rich rasvumite and sector-zoned “loparite-(Ce)” from Mont Saint-Hilaire (Québec, Canada) and their petrologic significance. European Journal of Mineralogy, 19, 533546.CrossRefGoogle Scholar
Chakhmouradian, A.R., Reguir, E.P., Kressall, R.D., Crozier, J., Pisiak, L.K., Sidhu, R. and Yang, P. (2015) Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis. Ore Geology Reviews, 64, 642666.CrossRefGoogle Scholar
Chakhmoradian, A.R., Reguir, E.P. and Zaitsev, A.N. (2016) Calcite and dolomite in intrusive carbonatites. I. Textural variations. Mineralogy and Petrology, 110, 333360.CrossRefGoogle Scholar
Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Couëslan, C., Xue, C., Kynický, J., Mumin, A.H. and Yang, P. (2017) Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274–275, 188213.CrossRefGoogle Scholar
Chernov, A.A. (1984) Modern Crystallography III. Crystal growth. Springer, Berlin.CrossRefGoogle Scholar
Christy, A.G. and Atencio, D. (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine, 77, 1320.CrossRefGoogle Scholar
Church, A.A. (1995) The Petrology of the Kerimasi Carbonatite Volcano and the Carbonatites of Oldoinyo Lengai with a Review of Other Occurrences of Extrusive Carbonatites. PhD dissertation, University of London, London.Google Scholar
Cressey, G., Wall, F. and Cressey, B.A. (1999) Differential REE uptake by sector growth of monazite. Mineralogical Magazine, 63, 813828.CrossRefGoogle Scholar
Dawson, J.B. (2008) The Gregory Rift Valley and Neogene-Recent Volcanoes of Northern Tanzania. Geological Society, London Geological Society Memoir No. 33, 102 p.Google Scholar
Dawson, J.B. and Powell, D.G. (1969) The Natron-Engaruka explosion crater area, Northern Tanzania. Bulletin Volcanologique, 33, 791817.CrossRefGoogle Scholar
Dawson, J.B., Steele, I.M., Smith, J.V. and Rivers, M.L. (1996) Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites. Mineralogical Magazine, 60, 415425.CrossRefGoogle Scholar
Deans, T. and Roberts, B. (1984) Carbonatite tuffs and lava clasts of the Tinderet foothills, western Kenya: a study of calcified natrocarbonatites. Journal of the Geological Society, London, 141, 563580.CrossRefGoogle Scholar
Delcamp, A., Delvaux, D., Kwelwa, S., Macheyeki, A. and Kervyn, M. (2016) Sector collapse events at volcanoes in the North Tanzanian divergence zone and their implications for regional tectonics. Geological Society of America Bulletin, 128, 169186.Google Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Dowty, E. (1976) Crystal structure and crystal growth II. Sector zoning in minerals. American Mineralogist, 61, 460469.Google Scholar
Grassberger, P. and Procaccia, I. (1984) Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D, 13, 3454.CrossRefGoogle Scholar
Guarino, V., Wu, F.-Y., Melluso, L., Gomes, C.B., Tassinari, C.C.G., Ruberti, E. and Brilli, M. (2017) U–Pb ages, geochemistry, C–O–Nd–Sr–Hf isotopes and petrogenesis of the Catalão II carbonatitic complex (Alto Paranaíba Igneous Province, Brazil): implications for regional‑scale heterogeneities in the Brazilian carbonatite associations. International Journal of Earth Sciences (GR Geologische Rundschau), 106, 19631989.CrossRefGoogle Scholar
Guteneva, V.S. (2012) Crystal Chemistry of Complex Oxides from the Khibina Alkaline Massif. Master thesis, St. Petersburg State University, St. Petersburg, Russia [in Russian].Google Scholar
Guzmics, T., Mitchell, R.H., Szabό, C., Berkesi, M., Milke, R. and Abart, R. (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contribution to Mineralogy and Petrology, 161, 177196.Google Scholar
Guzmics, T., Mitchell, R.H., Szabό, C., Berkesi, M., Milke, R. and Ratter, K. (2012) Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. Contributions to Mineralogy and Petrology, 164, 101122.CrossRefGoogle Scholar
Hay, R.L. (1983) Natrocarbonatite tephra of Kerimasi volcano, Tanzania. Geology, 11, 599602.2.0.CO;2>CrossRefGoogle Scholar
Hodgson, N.A. and Le Bas, M.J. (1992) The geochemistry and cryptic zonation of pyrochlore from San Vicente, Cape Verde Islands. Mineralogical Magazine, 56, 201214.CrossRefGoogle Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group minerals. American Mineralogist, 62, 403410.Google Scholar
Hogarth, D.D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatites. Pp. 105148 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Chapman and Hall, London.Google Scholar
Hogarth, D.D. and Horne, J.E.T. (1989) Non-metamict uranoan pyrochlore and uranpyrochlore from tuff near Ndale, Fort Portal area, Uganda. Mineralogical Magazine, 53, 257262.CrossRefGoogle Scholar
Hogarth, D.D., Williams, C.T. and Jones, P. (2000) Primary zoning in pyrochlore group minerals from carbonatites. Mineralogical Magazine, 64, 683697.CrossRefGoogle Scholar
Hollister, L.S. (1970) Origin, mechanism, and consequences of compositional sector zoning in staurolite. American Mineralogist, 55, 742766.Google Scholar
Hollister, L.S. and Gancarz, A. (1971) Compositional sector-zoning in clinopyroxene from the Narce Area, Italy. American Mineralogist, 56, 959979.Google Scholar
Ivanyuk, G.Y., Konoplyova, N.G, Yakovenchuk, V.N., Pakhomovsky, Y.A., Panikorovskii, T.L., Kalashnikov, A.O., Bocharov, V.N., Bazai, A.V., Mikhailova, J.A. and Goryainov, P.M. (2018) Three-D mineralogical mapping of the Kovdor phoscorite-carbonatite complex, NW Russia: III. Pyrochlore Supergroup Minerals. Minerals, 8, 277.CrossRefGoogle Scholar
Ivanyuk, G.Y., Yakovenchuk, V.N., Panikorovskii, T.L., Konoplyova, N., Pakhomovsky, Y.A., Bazai, A.V., Bocharov, V.N. and Krivovichev, S.V. (2019) Hydroxynatropyrochlore, (Na,Ca,Ce)2Nb2O6(OH), a new member of the pyrochlore group from the Kovdor phoscorite-carbonatite pipe, Kola Peninsula, Russia. Mineralogical Magazine, 83, 107113.CrossRefGoogle Scholar
Kalischewski, F., Lubashevsky, I. and Heuer, A. (2007) Boundary-reaction-diffusion model for zoning in binary crystals grown from solution. Physical Reviews E, 75, 021601.CrossRefGoogle ScholarPubMed
Kapustin, Yu.L. (1980) Mineralogy of Carbonatites. Amerind Publishing, New Delhi, 259 pp.Google Scholar
Kasatkin, A.V., Britvin, S.N., Peretyazhko, I.S. and Chukanov, N.V. (2020) Oxybismutomicrolite, a new pyrochlore-supergroup mineral from the Malkhan pegmatite field, Central Transbaikalia, Russia. Mineralogical Magazine, 84, 444454.CrossRefGoogle Scholar
Kervyn, M., Ernst, G.G.J., Klaudius, J., Keller, J., Mbede, E. and Jacobs, P. (2008) Remote sensing study of sector collapses and debris avalanche deposits at Oldoinyo Lengai and Kerimasi volcanoes, Tanzania. International Journal of Remote Sensing, 29, 65656595.CrossRefGoogle Scholar
Lee, M.J., Lee, J.L., Garcia, D., Moutte, J., Williams, C.T., Wall, F. and Kim, Y. (2006) Pyrochlore chemistry from the Sokli phoscorite–carbonatite complex, Finland: implications for the genesis of phoscorite and carbonatite association. Geochemical Journal, 40, 113.CrossRefGoogle Scholar
L'Heureux, I. and Fowler, A.D. (1994) A nonlinear model of oscillatory zoning in plagioclase. American Mineralogist, 79, 885891.Google Scholar
L'Heureux, I. and Katsev, S. (2006) Oscillatory zoning in a (Ba,Sr)SO4 solid solution: Macroscopic and cellular automata models. Chemical Geology, 225, 230243.CrossRefGoogle Scholar
Li, G., Yang, G., Lu, F., Xiong, M., Ge, X., Pan, B. and Fourestier, J.D. (2016) Fluorcalciopyrochlore, a new mineral species from Bayan Obo, Inner Mongolia, P.R. China. The Canadian Mineralogist, 54, 12851291.Google Scholar
Macintyre, R.M., Mitchell, J.G and Dawson, J.B. (1974) Age of fault movements in Tanzanian sector of East African Rift system. Nature, 247, 354356.CrossRefGoogle Scholar
Mariano, A.N. and Roeder, P.L. (1983) Kerimasi: a neglected carbonatite volcano. Journal of Geology, 91, 449455.CrossRefGoogle Scholar
Melgarejo, J.C., Costanzo, A., Bambi, A.C.J.M., Gonçalves, A.O. and Neto, A.B. (2012) Subsolidus processes as a key factor on the distribution of Nb species in plutonic carbonatites: the Tchivira case, Angola. Lithos, 152, 187201.CrossRefGoogle Scholar
Mitchell, R.H. (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geology Reviews, 64, 626641.CrossRefGoogle Scholar
Mitchell, R.H., Wahl, R. and Cohen, A. (2020) Mineralogy and genesis of pyrochlore apatitite from The Good Hope Carbonatite, Ontario: A potential niobium deposit. Mineralogical Magazine, 84, 8191.CrossRefGoogle Scholar
Moon, F.C. (1987) Chaotic vibrations. Wiley, New York.Google Scholar
Nasraoui, M. and Bilal, E. (2000) Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): a geochemical record of different alteration stages. Journal of Asian Earth Sciences, 18, 237251.CrossRefGoogle Scholar
Paquette, J. and Reeder, R.J. (1990) New type of compositional zoning in calcite: insights into crystal-growth mechanisms. Geology, 18, 12441247.2.3.CO;2>CrossRefGoogle Scholar
Perugini, D., Poli, G. and Mazzuoli, R. (2003) Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows. Journal of Volcanology and Geothermal Research, 124, 255279.CrossRefGoogle Scholar
Perugini, D., Poli, G. and Valentini, L. (2005) Strange attractors in plagioclase oscillatory zoning: Petrological implications. Contributions to Mineralogy and Petrology, 149, 482497.CrossRefGoogle Scholar
Popov, V.N., Tsivinskaya, Yu.S., Bekker, T.B., Kokh, K.A. and Kokh, A.E. (2006) Numerical investigation of heat-mass transfer processes in hydrothermal growth system. Journal of Crystal Growth, 289, 652658.CrossRefGoogle Scholar
Rakovan, J. and Reeder, R.J. (1994) Differential incorporation of trace elements and dissymmetrization in apatite: the role of surface structure during growth. American Mineralogist, 79, 892903.Google Scholar
Reguir, E.P., Chakhmouradian, A.R., Nalden, N.M., Yang, P. and Zaitsev, A.N. (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. The Canadian Mineralogist, 46, 879900.CrossRefGoogle Scholar
Rouse, R.C., Dunn, P.J., Peacor, D.R. and Wang, L. (1998) Structural studies of the natural antimonian pyrochlores. I. Mixed valency, cation site splitting, and symmetry reduction in lewisite. Journal of Solid State Chemistry, 141, 562569.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A 32, 751767.Google Scholar
Sharygin, V.V., Sobolev, N.V. and Channer D.M.DeR. (2009) Oscillatory-zoned crystals of pyrochlore-group minerals from the Guaniamo kimberlites, Venezuela. Lithos, 112S, 976985.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Shore, M. and Fowler, A.D. (1996) Oscillatory zoning in minerals: a common phenomenon. The Canadian Mineralogist, 34, 11111126.Google Scholar
Shtukenberg, A.G. and Punin, Yu.O. (2011) Micromorphological instability of a growing face as a source of oscillatory zoning in crystals. Mineralogical Magazine, 75, 169183.CrossRefGoogle Scholar
Shtukenberg, A.G., Popov, D.Yu. and Punin, Yu.O. (2005) Growth ordering and anomalous birefringence in ugrandite garnets. Mineralogical Magazine, 69, 537550.CrossRefGoogle Scholar
Shtukenberg, A.G., Punin, Yu.O. and Artamonova, O.I. (2009) Effect of crystal composition and growth rate on sector zoning in solid solutions grown from aqueous solutions. Mineralogical Magazine, 73, 385398.CrossRefGoogle Scholar
Subbotin, V.V. and Subbotina, G.F. (2000) Minerals of the pyrochlore group in phoscorites and carbonatites of the Kola Peninsula. Proceedings of the Murmansk State Technical University, 3, 273284.Google Scholar
Tappe, S., Steenfelt, A., Heaman, L.M. and Simonetti, A. (2009) The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite–kimberlite relationships. Lithos, 112S, 385399.CrossRefGoogle Scholar
Tauson, V.L. (2005) On the formation of growth sector zoning in izomorphous mixed crystals. Geochemistry International, 43, 410413.Google Scholar
Tiller, W.A. (1986) The role of strongly interface/surface adsorbed impurities on the purification process via crystallization methods. Journal of Crystal Growth, 75, 132138.CrossRefGoogle Scholar
Tiller, W.A. and Ahn, K.-S. (1980) Interface field effects on solute redistribution during crystallization. Journal of Crystal Growth, 49, 483501.CrossRefGoogle Scholar
Treiman, A.H. (1989) Carbonatite magma: properties and processes. Pp. 89104 in: Carbonatites. Genesis and Evolution (Bell, K., editor). Unwin Hyman Ltd, London.Google Scholar
Viladkar, S.G., Bismayer, U. and Ziietlow, P. (2017) Metamict U-rich pyrochlore of Newania carbonatite, Udaipur, Rajasthan. Journal Geological Society of India, 89, 133138.CrossRefGoogle Scholar
Voloshin, A.V, Pakhomovskiy, Ya.A., Pushcharovskiy, D.Yu., Nadezhina, T.N., Bakhchisaraitsev, A.Yu. and Kobyashev, Yu.S. (1989) Strontiopyrochlore: composition and structure. New Data on Minerals, 36, 1224 [in Russian].Google Scholar
Wall, F., Williams, C.T., Woolley, A.R. and Nasraoui, M. (1996) Pyrochlore from weathered carbonatite at Lueshe, Zaire. Mineralogical Magazine, 60, 731750.CrossRefGoogle Scholar
Walter, B.F., Parsapoor, A., Braunger, S., Marks, M.A.W., Wenzel, T., Martin, M and Markl, G. (2018) Pyrochlore as a monitor for magmatic and hydrothermal processes in carbonatites from the Kaiserstuhl volcanic complex (SW Germany). Chemical Geology, 498, 116.CrossRefGoogle Scholar
Wetzel, F., Schmitt, A.K., Kronz, A. and Wörner, G. (2010) In situ 238U-230Th disequilibrium dating of pyrochlore at sub-millennial precision. American Mineralogist, 95, 13531356.CrossRefGoogle Scholar
Wiedenmann, D., Zaitsev, A.N., Britvin, S.N., Krivovichev, S.V. and Keller, J. (2009) Alumoåkermanite, (Ca,Na)2(Al,Mg,Fe2+)(Si2O7), a new mineral from the active carbonatite–nephelinite–phonolite volcano Oldoinyo Lengai, northern Tanzania. Mineralogical Magazine, 73, 373384.CrossRefGoogle Scholar
Wiedenmann, D., Keller, J. and Zaitsev, A.N. (2010) Melilite-group minerals at Oldoinyo Lengai, Tanzania. Lithos, 118, 112118.CrossRefGoogle Scholar
Yaroshevskii, A.A. and Bagdasarov Yu.A. (2008) Geochemical diversity of minerals of the pyrochlore group. Geochemistry International, 46, 12451266.CrossRefGoogle Scholar
Zaitsev, A.N. (2010) Nyerereite from calcite carbonatite of Kerimasi volcano, northern Tanzania. Geology of Ore Deposits, 52, 630640.CrossRefGoogle Scholar
Zaitsev, A.N., Keller, J., Spratt, J., Perova, E.N. and Kearsley, A. (2008) Nyerereite-pirssonite-calcite-shortite relationships in altered natrocarbonatites, Oldoinyo Lengai, Tanzania. The Canadian Mineralogist, 46, 843860.CrossRefGoogle Scholar
Zaitsev, A.N., Williams, C.T., Britvin, S.N., Kuznetsova, I.V., Spratt, J., Petrov, S.V. and Keller, J. (2010) Kerimasite, Ca3Zr2(Fe3+2Si)O12, a new garnet from carbonatites of Kerimasi volcano and surrounding explosion craters, northern Tanzania. Mineralogical Magazine, 74, 841858.CrossRefGoogle Scholar
Zaitsev, A.N., Chakhmouradian, A.R., Siidra, O.I., Spratt, J., Williams, C.T., Stanley, C.J., Petrov, S.V., Britvin, S.N. and Polyakova, E.A. (2011) Fluorine-, yttrium- and lanthanide-rich cerianite-(Ce) from carbonatitic rocks of the Kerimasi volcano and surrounding explosion craters, Gregory Rift, northern Tanzania. Mineralogical Magazine, 75, 28132822.CrossRefGoogle Scholar
Zaitsev, A.N., Williams, C.T., Wall, F. and Zolotarev, A.A. (2012) Evolution of chemical composition of pyrochlore group minerals from phoscorites and carbonatites of the Khibina alkaline massif. Geology of Ore Deposits, 54, 503515.CrossRefGoogle Scholar
Zaitsev, A.N., Wenzel, T., Vennemann, T. and Markl, G. (2013) Tinderet volcano, Kenya – an old natrocarbonatite locality? Mineralogical Magazine, 77, 213226.CrossRefGoogle Scholar
Zaitsev, A.N., Williams, C.T., Jeffries, T.E., Strekopytov, S., Moutte, J., Ivashchenkova, O.V., Spratt, J., Petrov S.V.,Wall F., Seltmann R. and Borozdin A.P. (2014) Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 61, 204225.CrossRefGoogle Scholar
Zaitsev, A.N., Spratt, J., Sharygin, V.V., Wenzel, T., Zaitseva, O.A. and Markl, G. (2015) Mineralogy of the Laetolil footprint tuff: a comparison with possible volcanic sources from the Crater Highlands and Gregory rift. Journal of African Earth Sciences, 111, 214221.CrossRefGoogle Scholar
Zurevinski, S.E. and Mitchell, R.H. (2004) Extreme composition variation in pyrochlore group minerals at the Oka Carbonatite Complex, Québec: evidence of magma mixing? The Canadian Mineralogist, 42, 11591168.CrossRefGoogle Scholar
Supplementary material: File

Zaitsev et al. supplementary material

Zaitsev et al. supplementary material

Download Zaitsev et al. supplementary material(File)
File 225 KB