Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T09:19:07.126Z Has data issue: false hasContentIssue false

Ore genesis at La Colorada Ag-Zn-Pb deposit in Zacatecas, Mexico

Published online by Cambridge University Press:  05 July 2018

N. I. Chutas*
Affiliation:
Box 351310, Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
R. O. Sack
Affiliation:
Box 351310, Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA OFM Research, 28430 NE 47th Place, Redmond, WA 98053-8841, USA

Abstract

La Colorada, in Zacatecas State, Mexico is an epithermal Ag-Zn-Pb system hosted in Mesozoic calcareous sedimentary rocks overlain by Tertiary volcanic rocks. The dominant vein is associated with a fault system that accommodates Tertiary normal and strike-slip faulting. The ore consists of fahlore [(Cu,Ag)10(Zn,Fe)2(Sb,As)4S13], polybasite [(Ag,Cu)16Sb2S11]–pearceite [(Ag,Cu)16As2S11] solid solution, pyrargyrite [Ag3SbS3]–proustite [Ag3AsS3] solid solution, acanthite-argentite [Ag2S], and native silver; associated sulphides include galena, sphalerite, chalcopyrite and pyrite. The Ag:Sb of the bulk concentrate from the mine is 1.076 and the Ag:Pb is 0.088. Compositions of the assemblages fahlore + pyrargyrite-proustite + sphalerite, and fahlore + polybasite-pearceite solid solution + (Ag,Cu)2S solid solution + sphalerite encapsulated in quartz and sphalerite indicate a primary depositional temperature of ∼325°C for a depth between 725 and 960 m below the inferred palaeosurface, which is in accord with fluid-inclusion data for higher elevations in the mine.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albinson, F.T. (1988) Geologic reconstruction of paleosurfaces in the Sombrete, Colorada, and Fresnillo districts, Zacatecas State, Mexico. Economic Geology, 83, 16471667.CrossRefGoogle Scholar
Albinson, T., Norman, D.I., Cole, D. and Chomiak, B. (2001) Controls on formation of low-sulfidation epithermal deposits in Mexico: constraints from fluid inclusions and stable isotope data. Pp. 132 in: New Mines and Discoveries in Mexico and Central America (Albinson, T. and Nelson, C.E., editors). Society of Economic Geologists, Tulsa, Oklahoma, USA.CrossRefGoogle Scholar
Amcoff, O. (1976) The solubility of silver and antimony in galena. Neues Jahrbuch für Mineralogie Monatshefte, 6, 247261.Google Scholar
Cervantes, M.E. (1984) Operacion minera en la Colorada, Zacatecas. Geomimet, 8190.Google Scholar
Chutas, N.I. (2004) The solubility of silver in galena. PhD dissertation, University of Washington, USA.Google Scholar
Consejo de Recursos Minerales (1992) Geological-mining monograph of the 5th state of Zacatecas, Consejo de Recursos Minerales, 154 pp.Google Scholar
Ebel, D.S. (1993) Thermochemistry of fahlore (tetrahedrite) and biotite mineral solutions. PhD thesis, Purdue University, Indiana, USA.Google Scholar
Goodell, P.C. and Petersen, U. (1974) Julcani mining district, Peru: a study of metal ratios. Economic Geology, 69, 347361.CrossRefGoogle Scholar
Hackbarth, C.J. and Peterson, U. (1984) A fractional crystallization model for the deposition of argentian tetrahedrite. Economic Geology, 79, 448460.CrossRefGoogle Scholar
Hall, W.E. and Czamanske, G.K. (1972) Mineralogy and trace-element content of the Wood River lead-silver deposit, Blaine County Idaho. Economic Geology, 67, 350361.CrossRefGoogle Scholar
Harlov, D.E. and Sack, R.O. (1994) Thermochemistry of polybasite-pearceite solid solutions. Geochimica et Cosmochimica Acta, 58, 43634375.CrossRefGoogle Scholar
Hoda, S. N. and Chang, L.L.Y. (1975) Phase relations in the systems PbS-Ag2S-Sb2S3 and PbS-Ag2S-Bi2S3 . American Mineralogist, 60, 621633.Google Scholar
Huspeni, J.R., Kesler, S.E., Ruiz, J., Tuta, Z., Sutter, J.F. and Jones, L. (1984) Petrology and geochemistry of rhyolites associated with tin mineralization in northern Mexico. Economic Geology, 79, 87105.CrossRefGoogle Scholar
Lueth, V.W., Goodell, P.C. and Pingitore, N.E. (1990) Encoding the evolution of an ore system in bismuthinite-stibnite compositions: Julcani, Peru. Economic Geology, 85, 14621472.CrossRefGoogle Scholar
Lueth, V.W., Megaw, P.K.M., Pingitore, N.E. and Goodell, P.C. (2000) Systematic variation in galena solid solution compositions at Santa Eulalia, Chihuahua, Mexico. Economic Geology, 95, 16731687.Google Scholar
McDowell, F.W. and Clabaugh, S.E. (1979) Ignimbrites of the Sierra Madre Occidental and their relation to the tectonic history of western Mexico. Geological Society of America Special Paper, 180, 113124.CrossRefGoogle Scholar
Moller, S.A., Islas, F.J.E. and Davilia, F.R.T. (2001) New discoveries in the La Colorada district, Zacatecas State, Mexico. Pp. 95104 in: New Mines and Discoveries in Mexico and Central America (Albinson, T. and Nelson, C.E., editors). Society of Economic Geologists, Tulsa, Oklahoma.Google Scholar
Nenasheva, S.N. (1975) Eksperimental'noye Issledovaniye Prirody Primesey Serebra, Sur'my i Vismuta v Galenite. Sibirskoye Otdeleniye Instituta Geologii i Geofiziki, Nauka, Novosibirsk, USSR, 237, 124 pp.Google Scholar
Sack, R.O. (2000) Internally consistent database for sulfides and sulfosalts in the system Ag2S-Cu2S-ZnS-Sb2S3-As2S3 . Geochimica et Cosmochimica Acta, 64, 38033812.CrossRefGoogle Scholar
Sack, R.O. (2005) Internally consistent database for sulfides and sulfosalts in the system Ag2S-Cu2S-ZnS-FeS-Sb2S3-As2S3: Update. Geochimica et Cosmochimica Acta, (in press).CrossRefGoogle Scholar
Sack, R.O. and Goodell, P.C. (2002) Retrograde reactions involving galena and Ag-sulphosalts in a zoned ore deposit, Julcani, Peru. Mineralogical Magazine, 66, 10431062.CrossRefGoogle Scholar
Sack, R.O., Kuehner, S.M. and Hardy, L.S. (2002) Retrograde Ag-enrichment in fahlores from the Coeur d'Alene mining district, Idaho, USA. Mineralogical Magazine, 66, 215229.CrossRefGoogle Scholar
Sack, R.O., Lynch, J.G.V., and Foit, F.F. (2003) Fahlore as a petrogentic indicator: Keno Hill Ag-Pb-Zn district, Yukon, Canada. Mineralogical Magazine, 67, 10231038.CrossRefGoogle Scholar
Skinner, B.J. (1966) The system Cu-Ag-S. Economic Geology, 61, 126.CrossRefGoogle Scholar
Wernick, J.H. (1960) Constitution of the AgSbS2-PbS, AgBiS2–PbS and AgBiS2-AgBiSe2 systems. American Mineralogist, 45, 591598.Google Scholar
Wu, I. and Petersen, U. (1977) Geochemistry of tetrahedrite and mineral zoning at Casapalca, Peru. Economic Geology, 72, 9931016.CrossRefGoogle Scholar