Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T18:39:15.960Z Has data issue: false hasContentIssue false

The occurrence of wakefieldite, a rare earth element vanadate, in the rhyolitic Joe Lott Tuff, Utah, USA

Published online by Cambridge University Press:  14 October 2019

Bogusław Bagiński*
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089WarsawPoland
Ray Macdonald
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089WarsawPoland Environment Centre, Lancaster University, LancasterLA1 4YQ, UK
Harvey E. Belkin
Affiliation:
U.S. Geological Survey retired, 11142 Forest Edge Drive, Reston, VA20190-4026, USA
Jakub Kotowski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089WarsawPoland
Petras Jokubauskas
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089WarsawPoland
Beata Marciniak-Maliszewska
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089WarsawPoland
*
*Author for correspondence: Bogusław Bagiński, Email: B.Baginski1@uw.edu.pl

Abstract

The high-silica rhyolitic Joe Lott Tuff was erupted at 19.2 ± 0.4 Ma from the Mount Belknap caldera, SW Utah. Certain units in the tuff contain two species of wakefieldite, the Nd- and Y-dominant types. They occur in disseminated streaks and patches in association with rhodochrosite, calcite, Fe oxide, cerite-(Ce), and a Mn silicate (caryopilite?), thought to have been deposited from hydrothermal fluids. The wakefieldites contain the highest levels of As (≤15.34 wt.% As2O5) and P (≤5.7 wt.% P2O5) yet recorded in this mineral, indicating significant solid solution towards chernovite-(Y) and xenotime-(Y). Thorium levels are also unusually high (≤14.2 wt.% ThO2). The source of the hydrothermal fluid(s) is unknown but might be related to uranium mineralisation in the region, in that As, V and U are commonly associated in such deposits.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Bakker, R.J. and Elburg, M.A. (2006) A magmatic-hydrothermal transition in Arkaroola (northern Flinders Ranges, South Australia): from diopside-titanite pegmatites to hematite-quartz growth. Contributions to Mineralogy and Petrology, 152, 541569.CrossRefGoogle Scholar
Baudracco-Gritti, C., Quartieri, S., Vezzalini, G., Permingeat, F., Pillard, F. and Rinaldi, R. (1987) Une wakefieldite-(Ce) non plombifère: nouvelles données sur l'espèce minérale correspondant à l'orthovanadate de cérium. Bulletin Minéralogique, 110, 657663.CrossRefGoogle Scholar
Budding, K.E., Cunningham, C.G., Zielinski, R.A., Steven, T.A. and Stern, C.R. (1987) Petrology and chemistry of the Joe Lott Tuff Member of the Mount Belknap Volcanics, Marysvale volcanic field, west-central Utah. U.S. Geological Survey Professional Paper, 1354, 47 pp.Google Scholar
Cunningham, C.G. and Steven, T.A. (1979) Mount Belknap and Red Hills calderas and associated rocks, Marysvale volcanic field, west-central Utah. U.S. Geological Survey Bulletin, 1468, 34 pp.Google Scholar
Cunningham, C.G., Rasmussen, J.D., Steven, T.A., Rye, R.O., Rowley, P.D., Romberger, S.B. and Selverstone, J. (1998) Hydrothermal deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah. Mineralium Deposita, 33(5), 477494.CrossRefGoogle Scholar
Deliens, M. and Piret, P. (1977) La kusuïte (Ce3+, Pb2+, Pb4+)VO4, nouveau minéral. Bulletin de la Société Française de Minéralogie et Cristallographie, 100, 3941.CrossRefGoogle Scholar
Deliens, M. and Piret, P. (1986) La kusuïte devient la wakefieldite-(Ce) plombifère. Bulletin de Minéralogie, 109, 305.CrossRefGoogle Scholar
Hetherington, C.J., Jercinovic, M.J., Williams, M.L. and Mahan, K. (2008) Understanding geologic processes with xenotime: Composition, chronology, and a protocol for electron probe microanalysis. Chemical Geology, 254, 133147.CrossRefGoogle Scholar
Howard, D.G., Tschernich, R.W. and Klein, G.L. (1995) Occurrence of wakefieldite-(Ce) with zeolites at Yellow Lake, British Columbia, Canada. Neues Jahrbuch für Mineralogie Monatshefte, 3, 127132.Google Scholar
Khoury, H.N., Sokol, E.V. and Clark, I.D. (2015) Calcium uranium oxide minerals from central Jordan: assemblages, chemistry, and alteration products. The Canadian Mineralogist, 53, 6182.CrossRefGoogle Scholar
Kolitsch, U. and Holtstam, D. (2004) Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields. European Journal of Mineralogy, 16, 117128.CrossRefGoogle Scholar
Matysová, P., Götze, J., Leichmann, J., Škoda, R., Strnad, L., Drahota, P. and Grygar, T. (2016) Cathodoluminescence and LA-ICP-MS chemistry of silicified wood enclosing wakefieldite – REEs and V migration during complex diagenetic evolution. European Journal of Mineralogy, 28, 869887.CrossRefGoogle Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114, 363376. https://doi.org/10.1007/BF01244563.CrossRefGoogle Scholar
Miles, N.M., Hogarth, D.D. and Russell, D.S. (1971) Wakefieldite, yttrium vanadate: a new mineral from Quebec. American Mineralogist, 56, 395410.Google Scholar
Miyawaki, R. and Nakai, I. (1996) Crystal chemical aspects of rare earth minerals. Pp. 2140 in: Rare Earth Minerals. Chemistry, Origin and Ore Deposits (Jones, A.P., Wall, F. and Williams, C.T., editors). Chapman & Hall, London.Google Scholar
Moriyama, T., Miyawaki, R., Yokoyama, K., Matsubara, S., Hirano, H., Murakami, H. and Watanabe, Y. (2010) Wakefieldite-(Nd), a new neodymium vanadate mineral in the Arase stratiform ferromanganese deposit, Kochi Prefecture, Japan. Resource Geology, 61, 101110.CrossRefGoogle Scholar
Rowley, P.D., Mehnert, H.H., Naeser, C.W., Snee, L.W., Cunningham, C.G., Steven, T.A., Anderson, J.J., Sable, E.G. and Anderson R.E. (1994) Isotopic ages and stratigraphy of Cenozoic rocks of the Marysvale volcanic field and adjacent areas, west-central Utah. U.S. Geological Survey Bulletin, 2071, 35 pp.Google Scholar
Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Pp. 313345 in: Magmatism in the Ocean Basins. (Saunders, A.D. and Norry, M.J., editors). Special Publication of the Geological Society, 42. Geological Society, London.Google Scholar
van Panhuys-Sigler, M., Trewin, N.H. and Still, J. (1996) Roscoelite associated with reduction spots in Devonian red beds, Gamrie Bay, Banffshire. Scottish Journal of Geology, 32, 127132.CrossRefGoogle Scholar
Witzke, T., Kolitsch, U., Warnsloh, J.M. and Göske, J. (2008) Wakefieldite-(La), LaVO4, a new mineral species from the Glűcksstern Mine, Friedrichroda, Thuringia, Germany. European Journal of Mineralogy, 20, 11351139.CrossRefGoogle Scholar
Supplementary material: File

Bagiński et al. supplementary material

Bagiński et al. supplementary material 1

Download Bagiński et al. supplementary material(File)
File 70.7 KB
Supplementary material: File

Ferreira et al. supplementary material

Bagiński et al. supplementary material 2

Download Ferreira et al. supplementary material(File)
File 47.6 KB