Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T18:16:08.911Z Has data issue: false hasContentIssue false

Observation of Sb2S3-type post-post-perovskite in NaFeF3. Implications for ABX3 and A2X3 systems at ultrahigh pressure

Published online by Cambridge University Press:  02 January 2018

W. A. Crichton*
Affiliation:
ESRF – The European Synchrotron, 71, avenue des Martyrs, 38000 Grenoble, France
F. L. Bernal
Affiliation:
Department of Chemistry and Center for Materials Science and Nanotechnology, University of Oslo, Oslo, Norway
J. Guignard
Affiliation:
ESRF – The European Synchrotron, 71, avenue des Martyrs, 38000 Grenoble, France
M. Hanfland
Affiliation:
ESRF – The European Synchrotron, 71, avenue des Martyrs, 38000 Grenoble, France
S. Margadonna*
Affiliation:
College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK

Abstract

We describe the structures and transformations that lead to the crystallization of a post-post-perovskite of Sb2S3 type in a GdFeO3-type fluoroperovskite system at high-pressure conditions, through use of large-volume powder and single-crystal x-ray diffraction techniques. The results of this analysis gives unique access to the relative crystallographic orientations of all the polymorphs encountered (GdFeO3 type, CaIrO3 type and Sb2S3 type). We use this information to extend this description to include other calculated and observed forms that are competitive in ABX3 and A2X3 stoichiometries (e.g. α-Gd2S3 and Be3N2 types) and provide substantial information on inter-relationships between these structures. Such information is critical to the interpretation of transition mechanisms, predicting transition sequences and to the expression of directional properties in those transformed structures. The transformation from CaIrO3 type to Sb2S3 type is group-subgroup, from Cmcm with fc2a, to Pnma c5, with no observable volume change, but considerable change to the morphology of the lattice. There is a concomitant increase in coordination and average bond length compared to the post-perovskite form of NaFeF3.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: GET-UMR5563, Observatoire Midi- Pyrénées, 14 avenue Edouard Belin, 31400 Toulouse, France.

References

Aroyo, M.I., Perez-Mato, J.M., Capillas, C, Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. and Wondratschek, H. (2006) Bilbao Crystallographic Server I: Databases and crystallographic computing programs. Zeitschrift fir Kristallographie, 221, 1527.Google Scholar
Benner, G. and Hoppe, R. (1990) Uber fluoride des zweiwertigen Eisens: zum Aufbau von NaFeF3 . Journal of Fluorine Chemistry, 46, 283—295.CrossRefGoogle Scholar
Berastegui, P., Eriksson, S., Hull, S., Garcia Garcia, FJ. and Eriksen, J. (2004) Synthesis and crystal structure of the alkaline-earth thallate. MnT\2O3+n(M = Ca, Sr). Solid State Science, 6, 433-441.CrossRefGoogle Scholar
Bernal, F.L., Yusenko, K., Sottmann, I, Drathen, C, Guignard, J., Lovvik, O., Crichton, W.A. and Margadonna, S. (2014) Perovskite to postperovskite transition in NaFeF3 . Inorganic Chemistry, 53, 12205.CrossRefGoogle ScholarPubMed
Bertaut, E.F. and Mareschal, J. (1963) Un nouveau type de structure hexagonale AITO3 (T = Y, Eu, Gd, Tb, Dy, Ho, Er). Comptes Rendu Hebdomadaire des Seances de VAcademie des Sciences, 257, 867870.Google Scholar
Caracas, R. and Cohen, R.E. (2007) Ppv phase in selected sesquioxides from density-functional calculations. Physical Review B, 76, 184101.CrossRefGoogle Scholar
Capillas, S., Perez-Mato, J.M. and Aroyo, M.I. (2007) Maximal symmetry transition paths for reconstructive phase transitions. Journal of Physics: Condensed Matter, 19, 275203.Google Scholar
Cohen, R.E. and Lin, Y. (2014) Prediction of a potential high-pressure structure of FeSiO3 . Physical Review B, 90, 140102R.CrossRefGoogle Scholar
Dobson, D.P., Hunt, S.A., Lindsay-Scott, A. and Wood, I.G. (2011) Towards better analogues for MgSiO3 ppv: NaCoF3 and NaNiF3, two new recoverable fluoride ppvs. Physics of the Earth and Planetary Interiors, 189, 171175.CrossRefGoogle Scholar
Dobson, D.P., McCormack, R., Hunt, S.A., Ammann, M.W., Weidner, D., Li, L. and Wang, L. (2012) The relative strength of perovskite and post-perovskite NaCoF3 . Mineralogical Magazine, 76, 925—932.CrossRefGoogle Scholar
Dobson, D.P., Miyajima, N., Nestola, E, Alvaro, M., Casati, N., Liebske, C, Wood, I.G. and Walker, A.M. (2013) Strong inheritance of texture between perovskite and ppv in the D” layer. Nature Geoscience, 6, 575—578.CrossRefGoogle Scholar
Giaquinta, D.M. and zur Hoye, H.C. (1992) A new transition metal oxide with an unusual ABO3 structure. Journal of the American Chemical Society, 114, 1095210953.CrossRefGoogle Scholar
Gibbs, A.S., Knight, K.S. and Lightfoot, P. (2011) High-temperature phase transitions of hexagonal YMnO3 . Physical Review B, 83, 094111.CrossRefGoogle Scholar
Goutenoire, E, Caignaert, V, Hervieu, M., Michel, C. and Raveau, B. (1995) Chemical twinning of the rock salt structure: CaTl2O4 and Ca2Tl205, the first two members of the new series CanTl20n+3. Journal of Solid State Chemistry, 114, 428434.CrossRefGoogle Scholar
Grocholski, B., Shim, S.H. and Prakapenka, VB. (2010) Stability of the MgSiO3 analog NaMgF3 and its implication for mantle structure in super-Earths. Geophysical Research Letters, 37, LI 4204.CrossRefGoogle Scholar
Guignard, J. and Crichton, WA. (2014) Synthesis and recovery of bulk Fe4O5 from magnetite, Fe3O4. A member of a self-similar series of structures for the lower mantle and transition zone. Mineralogical Magazine, 78, 361371.CrossRefGoogle Scholar
Hammersley, A.P., Svensson, S.O., Thompson, A., Graafsma, H., Kvick, A and Moy, IP. (1995) Calibration and correction of distortions in 2D detector systems. Review of Scientific Instruments, 66, 27292733.CrossRefGoogle Scholar
Hunt, S.A., Lindsay-Scott, A., Wood, I.G., Ammann, M. W and Taniguchi, T (2013) The P-V-T equation of state of CaPtO3 ppv. Physics and Chemistry Minerals, 40, 7380.CrossRefGoogle Scholar
Hustoft, L, Catali, K., Shim, S.H., Kubo, A., Prakapenka, V and Kunz, M. (2008) Equation of state of NaMgF3postperovskite: Implication for the seismic velocity changes in the D” region. Geophysical Research Letters, 35, LI 0309.CrossRefGoogle Scholar
Ishii, T, Kojitani, H., Tsukamoto, S., Fujino, K., Mori, D., Inaguma, Y, Tsujino, N., Yoshino, T, Yamazaki, D., Higo, Y, Funakoshi, K. and Akaogi, M. (2014) High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr205 phases with meteoritical and petrological implications. American Mineralogist, 99, 1788—1797.CrossRefGoogle Scholar
Kroumova, E., Aroyo, M.I., Perez-Mato, J.M., Kirov, A., Capillas, C, Irantchev, S. and Wondratschek, H. (2003) Bilbao Crystallographic Server: Useful databases and tools for phase-transition studies. Phase Transactions, 76, 155170.CrossRefGoogle Scholar
Kusinsky, J., Jasienska, S. and Monty, C. (1994) Microstructural and microanalytical examinations of partially reduced doped wustites. Solid State Ionics, 68, 185192.CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (2000) General Structure Analysis System (GSAS).Los Alamos National Laboratory Report LAUR 86-748.Google Scholar
Le Godec, Y, Martinez-Garcia, D., Mezouar, M., Syfosse, G., Itie, IP. and Besson, J.M. (2000) Thermoelastic behavior of hexagonal graphite-like boron nitride. High Pressure Research, 17, 35—46.CrossRefGoogle Scholar
Liu, L.G. and Bassett, WA. (1986) Elements, Oxides, Silicates: High-Pressure Phases with Implications for the Earth's Interior. Oxford University Press, New York.Google Scholar
Martin, CD., Crichton, W.A., Liu, H.Z., Prakapenka, V, Chen, J.H. and Parise, IB. (2006a) Rietveld structure refinement of perovskite and ppv phases of NaMgF3(Neighborite) at high pressures. American Mineralogist, 91, 17031706.CrossRefGoogle Scholar
Martin, CD., Crichton, W.A., Liu, H.Z., Prakapenka, V B., Chen, J.H. and Parise, IB. (20066) Phase transitions and compressibility of NaMgF3(Neighborite) in perovskite- and ppv-related structures. Geophysical Research Letters, 33, L11305.Google Scholar
Martin, CD., Chapman, K.W., Chupas, EL, Prakapenka, Y, Lee, PL., Shastri, S.D. and Parise, IB. (2007) Compression, thermal expansion, structure and instability of CaIrO3, the structure model of MgSiO3ppv. American Mineralogist, 92, 1048—1053.CrossRefGoogle Scholar
Meetsma, A., Wiegers, G.A., Haange, R.J., de Boer, J.L. and Boom, G. (1991) Structure of two modifications of dysprosium sesquisulfide, Dy2S3 . Ada Crystallographica C47, 22872291.Google Scholar
Merkel, S., McNamara, A.K., Kubo, A., Speziale, S., Miyagi, L., Meng, Y, Duffy, T and Wenk, H.R. (2007) Deformation of (Mg, Fe)SiO3 ppv and D” anisotropy. Science, 316, 17291732.CrossRefGoogle Scholar
Merlini, M. and Hanfland, M. (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Research, 33, 511522.CrossRefGoogle Scholar
Momma, K. and Izumi, E (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Murakami, M., Hirose, K., Kawamora, K., Sata, N. and Ohishi, Y (2004) Post perovskite phase transition in MgSiO3 . Science, 304, 855858.CrossRefGoogle ScholarPubMed
Nodari, I., Alebouyeh, A., Brice, J.F., Gerardin, R. and Evrard, O. (1998) Caracterisation de nouveaux ferrites d'indium: In2Fe409 et InFeO3 . Materials Research Bulletin, 23, 10391044.CrossRefGoogle Scholar
Oganov, A.R. and Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D” layer. Nature, 430, 445448.CrossRefGoogle ScholarPubMed
Oganov, A.R. and Ono, S. (2005) The high-pressure phase of alumina and implications for Earth's D” layer. Proceedings of the National Academy of Science of the USA, 102, 1082810831.CrossRefGoogle Scholar
Oganov, A.R., Martonak, R., Laio, A., Raiteri, P. and Parrinello, M. (2005) Anisotropy of Earth's D” layer and stacking faults in the MgSiO3 ppv phase. Nature, 438, 11421144.CrossRefGoogle Scholar
Ono, S., Brodholt, IP. and Price, G.D. (2008) First-principles simulation of high-pressure polymorphs in MgAl2O4 . Physics and Chemistry of Minerals, 35, 381386.CrossRefGoogle Scholar
Ovsyannikov, S.Y., Xiang, X., Karkin, A.E., Shchennikov, YV and Manthilake, G. (2012) Pressure-temperature phase diagram of Ti2O3 and physical properties in the golden Th2S3-type phase. Physical Review B, 86, 024106.CrossRefGoogle Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip — a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallogrphy, 40, 786790.CrossRefGoogle Scholar
Petricek, Y, Dusek, M. and Palatinus, L. (2006) Jana2006. The crystallographic computing system., Institute of Physics, Praha Czech Republic.Google Scholar
Range, KJ. and Leeb, R. (1975) High-pressure modifications of rare-earth sulfides Ln2S3 (Ln = Lu-Ho, Y) with U2S3-structure. Zeitschrififir Naturforschung B, 30, 889895.CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T. (1968) Synthesis and structure of phases in the In2O3—Ga2O3 system. Journal of Inorganic and Nuclear Chemistry, 30, 13891398.CrossRefGoogle Scholar
Shim, S.H., Bengtson, A., Morgan, D., Sturhahn, W., Catalli, K., Zhao, J., Lerche, M. and Prakapenka, V. (2009) Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proceedings of the National Academy of Science of the USA, 106, 55085512.CrossRefGoogle ScholarPubMed
Shirako, Y, Kojitani, H., Oganov, A.R., Fujino, K., Miura, H., Mori, D., Inaguma, Y, Yamaura, K. and Akaogi, M. (2012a) Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovsite. American Mineralogist, 97, 159163.CrossRefGoogle Scholar
Shirako, Y, Shi, YG., Aimi, A., Mori, D., Kojitani, H., Yamaura, K., Inaguma, Y and Akaogi, M. (20126) High-pressure stability relations, crystal structures, and physical properties of perovskite and ppv of NaNiF3 . Journal of Solid State Chemistry, 191, 167174.CrossRefGoogle Scholar
Tasci, E.S., de la Flor, G., Orobenyo, C, Capillas, C, Perez-Mato, J.M. and Aroyo, M.I. (2012) An introduction to the tools hosted in the Bilbao Crystallographic Serve. EPJ Web of Conference Series 21:00009. doi:10.1051/epjconf/20122200009 Tateno, S., Hirose, K., Sata, N. and Ohisi, Y (2010) Distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low-pressure analogue to MgSiO3. Physics of Earth and Planetary Interiors, 181, 5459.Google Scholar
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.CrossRefGoogle Scholar
Tsuchiya, T, Tsuchiya, J., Umemoto, K. and Wentzcovitch, R.M. (2004) Phase transition in MgSiO3 perovskite in the earth's lower mantle. Earth and Planetary Science Letters, 224, 241.CrossRefGoogle Scholar
Tsuchiya, T, Yusa, H. and Tsuchiya, J. (2007) Post-Rh2O3(II) transition and the high pressure-temperature phase diagram of Gallia: A first-principles and x-ray diffraction study. Physical Review B, 76, 174108.CrossRefGoogle Scholar
Umemoto, K. and Wentzcovitch, R.M. (2006) Potential ultrahigh pressure polymorphs of ABX3-type compounds. Physical Review B, 74, 224105.CrossRefGoogle Scholar
Umemoto, K. and Wentzcovitch, R.M. (2008) Prediction of an U2S3-type polymorph of A12O3 at 3.7 Mbar. Proceedings of the National Academy of Science of the USA, 105, 65266530.CrossRefGoogle Scholar
Umemoto, K. and Wentzcovitch, R.M. (2011) Effect of the d electrons on the phase transitions in transition-metal sesquioxides. Physics and Chemistry of Minerals, 38, 387395.CrossRefGoogle Scholar
Umemoto, K., Wentzcovitch, R.M. and Allen, P.B. (2006) Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets. Science, 311, 983—986.CrossRefGoogle ScholarPubMed
Xu, C, Xu, B., Yang, Y, Dong, H., Oganov, A.R., Wang, S., Duan, W, Gu, B. and Bellaiche, L. (2014) Prediction of a stable post-post-perovskite structure from first principles. Physical Review B, 91, 020101.Google Scholar
Yusa, H., Tsuchiya, T, Sata, N. and Ohishi, Y (2008a) Rh2O3(II)-type structures in Ga2O3 and In2O3 under high pressure: Experiment and theory. Physical Review B, 11, 064107.Google Scholar
Yusa, H., Tsuchiya, T, Tsuchiya, J., Sata, N. and Ohishi, Y (20086) a-Gd2S3-type structure in In2O3: Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide. Physical Review B, 78, 092107.Google Scholar
Yusa, H., Tsuchiya, T, Sata, N. and Ohishi, Y (2009) High-pressure phase transition to the Gd2S3 structure in Sc2O3: A new trend in dense structures in sesquioxides. Inorganic Chemistry, 48, 75377543.CrossRefGoogle Scholar
Yusa, H., Shirako, Y, Akaogi, M., Kojitani, H., Hirao, N., Oishi, Y and Kikegawa, T (2012) Transitions in NaNiF3 and NaCoF3 and disproportionation of NaCoF3 postperovskite under high pressure and high temperature. Inorganic Chemistry, 51, 65596566.CrossRefGoogle ScholarPubMed
Zhang, L., Meng, Y, Yang, W, Wang, L., Mao, W.L., Zheng, Q.-S., Jeong, J.S., Wagner, A.J., Mkhoyan, K A., Liu, W, Xu, R. and Mao, H.-k. (2014) Disproportionation of (Mg,Fe)SiO3 perovskite in Earth's deep lower mantle. Science, 344, 877—882.CrossRefGoogle ScholarPubMed