Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T23:31:58.404Z Has data issue: false hasContentIssue false

Minerals of the rhönite-kuratite series in paralavas from a new combustion metamorphic complex in the Choir–Nyalga basin (Central Mongolia): composition, mineral assemblages and formation conditions

Published online by Cambridge University Press:  02 January 2018

Igor S. Peretyazhko*
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a Favorsky str., Irkutsk 664033, Russia
Elena A. Savina
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a Favorsky str., Irkutsk 664033, Russia
Elena A. Khromova
Affiliation:
Geological Institute, Siberian Branch of the Russian Academy of Sciences, 6a Sakhyanova str., Ulan-Ude 670047, Russia
*

Abstract

This is the first description of rare minerals found in paralavas from a recently discovered combustion metamorphic complex in the Choir–Nyalga basin, Central Mongolia. The identified minerals contain strongly variable concentrations of Si, Ti, Mg, Fe2+ and Fe3+and most commonly have compositions intermediate in a series from kuratite Ca4Fe102+Ti2O4[Si8Al4O 36] and rhönite Ca4(Mg, Fe2+)8Fe23+Ti2O4[Si6Al6O36] to low-Ti kuratite and unnamed Ti-free Fe2+-analogue of rhönite Ca4Fe82+Fe43+O4[Si8Al4O36]. The minerals crystallized in residual Si-Al-K and Si-Al-Ca-Fe immiscible melts after spinel, anorthite–bytownite, melilite, Al-clinopyroxene ± Mg-Fe olivine, together with Fe3+-bearing hercynite, Ca-rich fayalite, kirschsteinite, pyrrhotite ± native iron, wüstite, magnetite, celsian, hyalophane, Ba-orthoclase and fresnoite, but before nepheline± kalsilite, and later sulfates, carbonates, an unidentified 'X-mineral' close to Al- and Fe-rich tobermorite and goethite. Micro-Raman spectroscopy of kuratite shows five bands near 133–155 (strong), 399–401, 545–566, 684–693 (strongest) and 828–839 cm–1.

The kuratite-bearing Nyalga paralavas have bulk compositions with MgO/(MgO+FeO+Fe2O3), mol.% ∼0.5 and a CIPW normative ratio of Ne/(Ne+Lc) = 0.23–0.76. Minerals of the rhönite–kuratite series formed during paralava crystallization at ∼1100°C.The diversity of the paralava mineral assemblages might result from local composition variations of Ca-rich silica-undersaturated melts derived from Fe-bearing carbonate-silicate sediments which were affected by nearby coal combustion sources at reducing conditions (IW-WM-QFM buffers) and at a nearly atmospheric pressure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balassone, G., Franco, E., Mattia, C.F. and Pulity, R. (2004) Indialite in xenolitic rocks from Somma-Vesuvius volcano (Southern Italy): Crystal chemistry and petrogenetic features. American Mineralogist, 89, 16.CrossRefGoogle Scholar
Boivin, P. (1980) Données expérimentales préliminaires sur la stabilité de la rhönite à 1 atmosphere. Application aux gisements naturels. Bulletin de Minéralogie, 103, 491502.CrossRefGoogle Scholar
Bonaccorsi, E., Merlino, S. and Pasero, M. (1990) Rhönite: structure and micro structural features, crystal chemistry and polysomatic relationships. European Journal of Mineralogy, 2, 203218.CrossRefGoogle Scholar
Chesnokov, B.V., Vilisov, V.A., Bushmakin, A.F., Kotlyarov, V.A. and Belogub, E.B. (1994) New minerals from burned spoil-heaps of the Chelyabinsk coal basin (sixth report) [in Russian, with English Abstr.]. Uralskiy Mineralogicheskiy Sbornik, 3, 334.Google Scholar
Cosca, M.A., Rouse, R.R. and Essene, E.J. (1988) Dorrite [Ca2(Mg,Fe3 +4)(Al4Si2)O20], a new member of the aenigmatite group from a pyrometamorphic melt-rock. American Mineralogist, 73, 14401448.Google Scholar
Cosca, M.A, Essene, E.J., Geissman, J.G., Simmons, W. B. and Coates, D.A. (1989) Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. American Mineralogist, 74, 85100.Google Scholar
Davidson, P.M. and Mukhopadhyay, D.K. (1984) Ca-Fe-Mg olivines: Phase relations and a solution model. Contribution to Mineralogy and Petrology, 86, 256263.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals. Longman Scientific & Technical, Harlow, UK.Google Scholar
Durand, C., Baumgartner, L.P. and Marquer, D. (2015) Low melting temperature for calcite at 1000 bars on the join CaCO3-H2O — some geological implications. Terra Nova, 27, 364369.CrossRefGoogle Scholar
Erdenetsogt, B., Lee, I., Bat-Erdene, D. and Jargal, L. (2009) Mongolian coal-bearing basins: geological settings, coal characteristics, distribution, and resources. International Journal of Coal Geology, 80, 87104.CrossRefGoogle Scholar
Foit, F.F., Hooper, R.L. and Rosenberg, P.E. (1987) An unusual pyroxene, melilite, and iron oxide mineral assemblage inacoal-firebuchite from Buffalo, Wyoming. American Mineralogist, 72, 137147.Google Scholar
Galuskina, I.O., Galuskin, E.V., Pakhomova, A.S., Widmer, R., Armbruster, T., Lazic, B., Grew, E.S., Vapnik, Y., Dzierzanowski, P. andMurashko,M. (2014) Khesinite, IMA 2014-033. CNMNC Newsletter No. 21, August 2014, page 802. Mineralogical Magazine, 78, 797804.Google Scholar
Gamble, J.G. and Kyle P.R. (1987) The origin of glass and amphibole in spinel wehrlite xenoliths from Foster Crater, McMurdo Volcanic Group, Antarctica. Journal of Petrology, 28, 755780.CrossRefGoogle Scholar
Grapes, R. and Keller, J. (2010) Fe2+-dominant rhönite in undersaturated alkaline basaltic rocks, Kaiserstuhl volcanic complex, Upper Rhine Graben, SW Germany. European Journal of Mineralogy, 22, 285292.CrossRefGoogle Scholar
Grapes, R.H., Wysoczanski, R.J. and Hoskin, P.W.O. (2003) Rhönite paragenesis in pyroxenite xenoliths, Mount Sidley volcano, Marie Byrd Land, West Antarctica. Mineralogical Magazine, 67, 639651.CrossRefGoogle Scholar
Grew, E.S., Hålenius, U., Pasero, M. and Barbier, J. (2008) Recommended nomenclature for the sapphir-ine and surinamite groups (sapphirine supergroup). Mineralogical Magazine, 72, 839876.CrossRefGoogle Scholar
Grünhagen, H. and Seck, H.A. (1972) Rhönite aus einem Melaphonolith vom Puy de Saint-Sandoux (Auvergne). Tschermaks Mineralogische und Petrographische Mitteilungen, 18, 1738.CrossRefGoogle Scholar
Haefeker, U., Kaindl, R. and Tropper, P. (2012) Semi-quantitative determination of the Fe/Mg ratio in synthetic cordierite using Raman spectroscopy. American Mineralogist, 97, 16621669.CrossRefGoogle Scholar
Haggerty, S.E. (1991) Oxide mineralogy of the upper mantle. Spinel mineral group. Pp. 355416 in. Oxide Minerals: Petrologic and Magnetic Significance (Lindsley, D. H., editor). Reviews in Mineralogy, Vol. 25. Mineralogical Society of America.CrossRefGoogle Scholar
Havette, A., Clocchiatti, R., Nativel, P. and Montaggioni, L. (1982) Une paragenese inhabituelle à fassaïte, melilite et rhönite dans un basalte alcalin contaminé au contact d'un récif coralline (Saint-Lieu, Ile de la Réunion). Bulletin de Minéralogie, 105, 364375.CrossRefGoogle Scholar
He, Y.T. and Traina, S.J. (2007) Transformation of magnetite to goethite under alkaline pH conditions. Clay Minerals, 42, 1319.CrossRefGoogle Scholar
Hwang, S-L., Shen, P., Chu, H-T., Yui, T-F., Varela, M-E. and Iizuka, Y (2014) Kuratite (IMA 2013-109): The ‘unknown’ Fe-Al-Ti silicate from the angrite D'Orbigny (abstract). in: 45th Lunar and Planetary Science Conference. LPI Contribution no. 1777, 1818.Google Scholar
Hwang, S-L., Shen, P., Chu, H-T., Yui, T-F., Varela, M-E. and Iizuka, Y (2016) Kuratite Ca4(Fe2+10Ti2) O4[Si8Al4O36], the Fe2+-analogue of rhönite, a new mineral from D'Orbigny angrite meteorite. Mineralogical Magazine, 80, 10671076.CrossRefGoogle Scholar
Jambon, A. and Boudouma, O. (2011) Evidence for rhönite in angrites D'Orbigny and Sahara 99555 (abstract). Meteoritics and Planetary Science, 46 Sup., A113.Google Scholar
Kuehner, S.M. and Irving, A.J. (2007) Primary ferric-iron-bearing rhönite in plutonic igneous angrite NWA 4590: implications for redox conditions on the angrite parent body. in: EOS, 88, Fall Meeting Supplement. Abs., P41A-0219. Google Scholar
Kunzmann, T (1989) Rhönit: Mineralchemie, Paragenese und Stabilität in alkalibasaltischen Vulkaniten, Ein Beitrag zur Mineralogenese der Rhönit Änimagnit-Mischkristallgruppe. Dissertation Universität München, Germany.Google Scholar
Kunzmann, T (1999) The aenigmatite-rhönite mineral group. European Journal of Mineralogy, 11, 743756.CrossRefGoogle Scholar
Kurat, G., Varela, M.E., Brandstätter, F., Weckwerth, G., Clayton, R., Weber, H.W., Schultz, L., Wäsch, E. and Nazarov, M.A. (2004) D'Orbigny: A non-igneous angritic achondrite. Geochimica et Cosmochimica Acta, 68, 19011921.CrossRefGoogle Scholar
Lavrent'ev, Yu.G., Karmanov, N.S. and Usova, L.V. (2015) Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope. Russian Geology and Geophysics, 56, 11541161.Google Scholar
Ma, C., Krot, A.N., Nagashima, K. and Tschauner, O. (2014) Warkite, IMA 2013-129. CNMNC Newsletter No. 20, June 2014: 552. Mineralogical Magazine, 78, 549558.Google Scholar
Ma, C. and Krot, A.N. (2015) Addibischoffite, IMA 2015-001. CNMNC Newsletter No. 25, June 2015, page 532. Mineralogical Magazine, 79, 529535.Google Scholar
Ma, C., Paque, J. and Tschauner, O. (2015) Beckettite, IMA 2015-001. CNMNC Newsletter No. 25, June 2015, page 531. Mineralogical Magazine, 79, 529535.Google Scholar
McMillan, P., Putnis, A. and Carpenter, M.A. (1984) A Raman-spectroscopic study of Al-Si ordering in synthetic magnesium cordierite. Physics and Chemistry of Minerals, 10, 256260.CrossRefGoogle Scholar
Melluso, L., Conticelli, S. and Gennaro, R. (2010) Kirschsteinite in the Capo di Bove melilite leucitite lava (cecilite), Alban Hills, Italy. Mineralogical Magazine, 74, 887902.CrossRefGoogle Scholar
Mittlefehldt, D.W., Killgore, M. and Lee, M.T (2002) Petrology and geochemistry of D'Orbigny, geochemistry of Sahara 99555, and the origins of angrites. Meteoritics and Planetary Science, 37, 345369.CrossRefGoogle Scholar
Mukhopadhyay, D.K. and Lindsley, D.H. (1983) Phase relations in the join kirschsteinite (CaFeSiO4) — fayalite (Fe2SiO4). American Mineralogist, 68, 10891094.Google Scholar
Olsson, H.B. (1983) Rhönite from Skåne (Scania), southern Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 105, 299–286.CrossRefGoogle Scholar
Peretyazhko, I.S., Savina, E.A., Karmanov, N.S. and Pavlova, L. A. (2014) Silicate—iron fluid media in rhyolitic magma: data on rhyolites from the Nilginskaya Basin, Central Mongolia. Petrology, 22, 255292.CrossRefGoogle Scholar
Poon, W.C.K., Putnis, A. and Salje, E. (1990) Structural states of Mg cordierite: IV Raman spectroscopy and local order parameter behavior. Journal of Physics: Condensed Matter, 2, 63616372.Google Scholar
Richardson, I.G. (2004) Tobermorite/jennite-and tober-morite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blastfurnace slag, metakaolin, or silica fume. Cement and Concrete Research, 34, 17331777.CrossRefGoogle Scholar
Schreyer, W., Maresch, W.V., Daniels, P. and Wolfsdorff, P. (1990) Potassic cordierite: characteristic minerals for high-temperature,very low-pressure environments. Contribution to Mineralogy and Petrology, 105, 162172.CrossRefGoogle Scholar
Sharigin, YY, Kothay, K., Szabó, Cs., Timina, T.Ju., Török, K., Vapnik, Ye. and Kuzmin, D.V. (2011) Rhönite in alkali basalts: silicate melt inclusions in olivine phenocrysts. Russian Geology and Geophysics, 52, 13341352.CrossRefGoogle Scholar
Sokol, E., Sharygin, V., Kalugin, V., Volkova, N. and Nignatulina, E. (2002) Fayalite and kirschsteinite solid solutions in melts from burned spoil-heaps, South Urals, Russia. European Journal of Mineralogy, 14, 795807.CrossRefGoogle Scholar
Treiman, A.H. (2008) Rhönite in Luna 24 pyroxenes: First find from the Moon, and implications for volatiles in planetary magmas. American Mineralogist, 93, 488–91.CrossRefGoogle Scholar
Žaček, V., Skála, R. and Zdenek, D. (2015) Combustion metamorphism in the Most Basin. Pp. 162202 in: Coal and Peat Fires: A Global Perspective (Glenn, B. Prakash, A. and Sokol, E.V., editors). Elsevier, New York.Google Scholar