Skip to main content Accessibility help
×
Home

Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). II. Arsiccioite, AgHg2TlAs2S6, a new mineral from the Monte Arsiccio mine: occurrence, crystal structure and crystal chemistry of the routhierite isotypic series

  • C. Biagioni (a1), E. Bonaccorsi (a1), Y. Moëlo (a2), P. Orlandi (a1) (a3), L. Bindi (a4), M. D’Orazio (a1) and S. Vezzoni (a1)...

Abstract

The new mineral species arsiccioite, AgHg2TlAs2S6, was discovered in the baryte-pyrite-iron oxide ore deposit exploited at the Monte Arsiccio mine, near Sant’Anna di Stazzema (Apuan Alps, Tuscany, Italy). It occurs as anhedral grains scattered in microcrystalline baryte, associated with cinnabar, laffittite, protochabournéite, pyrite, realgar, Hg-bearing sphalerite and stibnite. Arsiccioite is red, with a metallic to sub-metallic lustre. Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 471.1: 29.0/29.4; 548.3: 27.6/28.3; 586.6: 26.1/26.5; 652.3: 24.2/24.6. Electron microprobe analyses give (wt.%): Cu 0.78(6), Ag 8.68(21), Zn 0.47(27), Fe 0.04(1), Hg 35.36(87), Cd 0.20(5), Tl 18.79(33), As 10.77(19), Sb 4.75(10), S 18.08(21), Se 0.07(5), total 97.99(44). On the basis of ΣMe = 6 a.p.f.u., the chemical formula is Ag0.87(2)Cu0.13(1)Zn0.08(4)Fe0.01(1)Hg1.91(5)Cd0.02(1)Tl1.00(2) (As1.56(2)Sb0.42(1))S1.98S6.12(6)Se0.01(1). Arsiccioite is tetragonal, I 2m, with a 10.1386(6), c 11.3441(5) Å, V 1166.1(2) Å3, Z = 4. The main diffraction lines of the powder diagram are [d(in Å), visually estimated intensity, hkl]: 4.195, m, 211; 3.542, m, 103; 3.025, vs, 222; 2.636, m, 114; 2.518, s, 400 and 303. The crystal structure of arsiccioite has been refined by single-crystal X-ray data to a final R 1 = 0.030, on the basis of 893 observed reflections. It shows a three dimensional framework of (Hg,Ag)- centred tetrahedra (1 M1 + 2 M2), with channels parallel to [001] hosting TlS6 and (As,Sb)S3 disymmetric polyhedra. Arsiccioite is derived from its isotype routhierite M1Cu M2Hg2TlAs2S6 through the double heterovalent substitution M1Cu+ + M2Hg2+ M1Hg2+ + M2Ag+. This substitution obeys a steric constraint, with Ag+, the largest cation relative to Hg2+ and Cu+, entering the largest M2 site. The ideal crystal chemical formula of arsiccioite is M1Hg M2(Hg0.5Ag0.5)2TlAs2S6. The crystal chemistry of the routhierite isotypic series is discussed. Finally, the distribution of Hg ore minerals in the Apuan Alps is reviewed.

Copyright

Corresponding author

References

Hide All
Balić-Žunić, T., Makovicky, E., Karanović, L., Poleti, D. and Graeser, S. (2006) The crystal structure of gabrielite, Tl2AgCu2As3S7, a new species of thallium sulfosalt from Lengenbach, Switzerland. The Canadian Mineralogist, 44, 141158.
Biagioni, C. and Orlandi, P. (2009) Tiemannite e metacinabro della miniera Buca della Vena (Alpi Apuane). Atti della Società Toscana di Scienze Naturali, Memorie, 114, 1317.
Biagioni, C., Bonaccorsi, E., Moëlo, Y. and Orlandi, P. (2013a) Mercury-arsenic sulfosalts from Apuan Alps (Tuscany, Italy). I. Routhierite, (Cu0.8Ag0.2)Hg2Tl(As1.4Sb0.6)S=2S6, from Monte Arsiccio mine: occurrence and crystal structure. European Journal of Mineralogy, DOI: 10.1127/0935-1221/2013/0025-2320.
Biagioni, C., D’Orazio, M., Vezzoni, S., Dini, A. and Orlandi, P. (2013b) Mobilization of Tl-Hg-As-Sb- (Ag,Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy). Geology, 41, 747751.
Biagioni, C., Orlandi, P., Pasero, M., Nestola, F. and Bindi, L. (2013c) Mapiquiroite, IMA 2013-010. CNMNC Newsletter No. 16, August 2013, page 2703; Mineralogical Magazine, 77, 26952709.
Bindi, L. (2008) Routhierite, Tl(Cu,Ag)(Hg,Zn)2 (As,Sb)2S6. Acta Crystallographica, C64, i95–i96.
Bindi, L., Keutsch, F.M., Francis, C.A. and Menchetti, S. (2009) Fettelite, [Ag6As2S7][Ag10HgAs2S8] from Chañarcillo, Chile: crystal structure, pseudosymmetry, twinning, and revised chemical formula. American Mineralogist, 94, 609615.
Bindi, L., Downs, R.T., Spry, P.G., Pinch, W.W. and Menchetti, S. (2012) A chemical and structural reexamination of fettelite samples from the type locality, Odenwald, southwest Germany. Mineralogical Magazine, 76, 551566.
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.
Brown, K.L. and Dickson, F.W. (1976) The crystal structure of synthetic christite, HgTlAsS3 . Zeitschrift für Kristallographie, 114, 367376.
Bruker AXS Inc. (2004) APEX 2. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
Chen, T.T. and Szymański, J.T. (1981) The structure and chemistry of galkhaite, a mercury sulfosalt containing Cs and Tl. The Canadian Mineralogist, 19, 571581.
Costagliola, P., Benvenuti, M., Tanelli, G., Cortecci, G. and Lattanzi, P. (1990) The barite-pyrite-iron oxides deposit of Monte Arsiccio (Apuane Alps). Geological setting, mineralogy, fluid inclusions, stable isotopes and genesis. Bollettino della Società Geologica Italiana, 109, 267277.
Dini, A. (1995) Metacinabro zincifero (leviglianite) e sfalerite mercurifera della miniera di Levigliani (Alpi Apuane, Toscana). Atti della Società Toscana di Scienze Naturali, Memorie, 102, 6772.
Dini, A. and Biagioni, C. (2010) I giacimenti mercuriferi di Levigliani e Ripa (Alpi Apuane): storia, genesi e mineralogia. Rivista Mineralogica Italiana, 1/2010, 1235.
Dini, A. and Orlandi, P. (1995) Coloradoite (HgTe) from Buca della Vena mine, Apuan Alps, Tuscany, Italy. Atti della Società Toscana di Scienze Naturali, Memorie, 102, 4750.
Dini, A., Benvenuti, M., Lattanzi, P. and Tanelli, G. (1995) Mineral assemblage in the Hg-Zn-(Fe)-S system at Levigliani, Tuscany, Italy. European Journal of Mineralogy, 7, 417427.
Dini, A., Benvenuti, M., Costagliola, P. and Lattanzi, P. (2001) Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuane Alps (Tuscany, Italy). Ore Geology Reviews, 18, 149167.
Engel, P., Nowacki, W., Balić-Žunić, T. and Šćavnićar, S. (1982) The crystal structure of simonite, TlHgAs3S6 . Zeitschrift für Kristallographie, 161, 159166.
Fleet, M.E. (1953) The crystal structure and bonding of lorandite, Tl2As2S4 . Zeitschrift für Kristallographie, 138, 147160.
Giester, G., Lengauer, C.L., Tillmans, E. and Zemann, J. (2002): Tl2S: Re-determination of crystal structure and stereochemical discussion. Journal of Solid State Chemistry, 168, 322330.
Graeser, S., Schwander, H., Wulf, R. and Edenharter, A. (1992) Ernigglite (Tl2SnAs2S6), a new mineral from Lengenbach, Binntal (Switzerland): description and crystal structure determination based on data from synchrotron radiation. Schweizerische Mineralogische und Petrographische Mitteilungen, 72, 293305.
Graeser, S., Schwander, H., Wulf, R. and Edenharter, A. (1995) Stalderite, TlCu(Zn,Fe,Hg)2As2S6 – a new mineral related to routhierite: description and crystal structure. Schweizerische Mineralogische und Petrographische Mitteilungen, 75, 337345.
Harris, D.C. (1989) The mineralogy and geochemistry of the Hemlo gold deposit, Ontario. Geological Survey of Canada, Economic Geology Reports, 38, 88 pp.
Harris, D.C., Roberts, A.C. and Criddle, A.J. (1989) Vaughanite, TlHgSb4S7, a new mineral from Hemlo, Ontario, Canada. Mineralogical Magazine, 53, 7983.
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.
Johan, Z., Mantienne, J. and Picot, P. (1974) La routhiérite, TlHgAsS3, et la laffittite, AgHgAsS3, deux nouvelles espèces minerales. Bulletin de la Socié té française de Miné ralogie et de Cristallographie, 97, 4853.
Johan, Z., Kvaček, M. and Picot, P. (1976) La petrovicite, Cu3HgPbBiSe5, un nouveau minéral. Bulletin de la Société française de Minéralogie et de Cristallographie, 99, 310313.
Kersten, C. (1843) Untersuchung eines quecksilberhaltigen Falherzes von Val di Castello in Toscana. Annalen der Physik, 251, 131135.
Kraus, W. and Nolze, G. (1996) PowderCell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.
Makovicky, E., Forcher, K., Lottermoser, W. and Amthauer, G. (1990) The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite. Mineralogy and Petrology, 43, 7381.
Merlino, S., Biagioni, C. and Orlandi, P. (2013) The crystal structure of grumiplucite: its OD character and structural relationships. Rendiconti Lincei Scienze Fisiche e Naturali, 24, 4752.
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring., A., Paar, W.H., Nickel, E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt subcommittee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 20, 746.
Moëlo, Y., Orlandi, P., Guillot-Deudon, C., Biagioni, C., Paar, W. and Evain, M. (2011) Lead-antimony sulfosalts from Tuscany (Italy). XI. The new mineral species parasterryite, Ag4Pb20(Sb14.5As9.5)S24S58, and associated sterryite, Cu(Ag,Cu)3Pb19 (Sb,As)S22(As−As)S56, from the Pollone mine, Tuscany, Italy. The Canadian Mineralogist, 49, 623638.
Ohmasa, M. and Nowacki, W. (1971) The crystal structure of vrbaite, Hg3Tl4As8Sb2S20. Zeitschrift für Kristallographie, 134, 360380.
Orlandi, P., Moëlo, Y., Meerschaut, A., Palvadeau, P. and Léone, P. (2005) Lead-antimony sulfosalts from Tuscany (Italy). VIII. Rouxelite, Cu2HgPb22Sb28S64(O,S)2, a new sulfosalt from Buca della Vena mine, Apuan Alps: definition and crystal structure. The Canadian Mineralogist, 43, 919933.
Orlandi, P., Moëlo, Y., Campostrini, I. and Meerschaut, A. (2007) Lead-antimony sulfosalts from Tuscany (Italy). IX. Marrucciite, Hg3Pb16Sb18S46, a new sulfosalt from Buca della Vena mine, Apuan Alps: definition and crystal structure. European Journal of Mineralogy, 19, 267279.
Orlandi, P., Moëlo, Y. and Biagioni, C. (2010) Leadantimony sulfosalts from Tuscany (Italy). X. Dadsonite from the Buca della Vena mine and Birich izoklakeite from the Seravezza marble quarries. Periodico di Mineralogia, 79, 113121.
Orlandi, P., Biagioni, C., Bonaccorsi, E., Moëlo, Y. and Paar, W. (2012) Lead-antimony sulfosalts from Tuscany (Italy). XII. Boscardinite, TlPb4(Sb7As2)S9S18, a new mineral species from the Monte Arsiccio mine: occurrence and crystal structure. The Canadian Mineralogist, 50, 235251.
Orlandi, P., Biagioni, C., Moëlo, Y., Bonaccorsi, E. and Paar, W. (2013) Lead-antimony sulfosalts from Tuscany (Italy). XIII. Protochabourné ite, ~Tl2Pb(Sb9-8As1-2)S10S17, from the Monte Arsiccio mine: occurrence, crystal structure and relationship with chabournéite. The Canadian Mineralogist, 51, 475494.
Paar, W.H., Pring, A., Moëlo, Y., Stanley, C.J., Putz, H., Topa, D., Roberts, A.C. and Braithwaite, R.S.W. (2009) Daliranite, PbHgAs2S6, a new sulphosalt from the Zarshouran Au-As deposit, Takab region, Iran. Mineralogical Magazine, 73, 871881.
Pandeli, E., Bagnoli, P. and Negri, M. (2004) The Fornovolasco schists of the Apuan Alps (Northern Tuscany, Italy): a new hypothesis for their stratigraphic setting. Bollettino della Società Geologica Italiana, 123, 5366.
Parasyuk, O.V., Gulay, L.D., Piskach, L.V. and Gagalovska, O.P. (2002) The Ag2S-HgS-GeS2 system at 670 K and the crystal structure of the Ag2HgGeS4 compound. Journal of Alloys and Compounds, 336, 213217.
Pervukhina, N.V., Borisov, S.V., Magarill, S.A., Vasil’ev, V.I. and Kuratieva, N.V. (2010) Redetermination and crystallographic analysis of the structure of Sb-containing laffittite, AgHg(As,Sb)S3 from Chauvai (Kyrgyzstan). Journal of Structural Chemistry, 51, 683688.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.
Spiridonov, E.M., Krapiva, L.Ya., Gapeev, A.K., Stepanov, V.I., Prushinskaya, E.Y. and Volgin, V.Y. (1981) Gruzdevite, Cu6Hg3Sb4S12 – a new mineral from the Chauvai antimony-mercury deposit, Central Asia. Doklady Academii Nauk SSSR, 261, 971976.(in Russian).
Srikrishnan, T. and Nowacki, W. (1975) A redetermination of the crystal structure of livingstonite, HgSb4S8. Zeitschrift für Kristallographie, 141, 174192.
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical-Structural Mineral Classification System (9th ed.). Schweizerbart’sche, Stuttgart, Germany.
Vasil’ev, V.I., Pervukhina, N.V., Borisov, S.V., Magarill, S.A., Naumov, D.Yu. and Kurat’eva, N.V. (2010) Aktashite Cu6Hg3As4S12 from the Aktash deposit, Altai, Russia: refinement and crystal chemical analysis of the structure. Geology of Ore Deposits, 52, 656661.
Wilson, A.J.C. (1992) International Tables for X-ray Crystallography, Volume C. Kluwer, Dordrecht, The Netherlands.
Yang, H., Downs, R.T., Costin, G. and Eichler, C.M. (2007) The crystal structure of tvalchrelidzeite, Hg3SbAsS3, and a revision of its chemical formula. The Canadian Mineralogist, 45, 15291533.

Keywords

Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). II. Arsiccioite, AgHg2TlAs2S6, a new mineral from the Monte Arsiccio mine: occurrence, crystal structure and crystal chemistry of the routhierite isotypic series

  • C. Biagioni (a1), E. Bonaccorsi (a1), Y. Moëlo (a2), P. Orlandi (a1) (a3), L. Bindi (a4), M. D’Orazio (a1) and S. Vezzoni (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed