Skip to main content Accessibility help
×
Home

Mavlyanovite, Mn5Si3: a new mineral species from a lamproite diatreme, Chatkal Ridge, Uzbekistan

  • R. G. Yusupov (a1), C. J. Stanley (a2), M. D. Welch (a2), J. Spratt (a2), G. Cressey (a2), M. S. Rumsey (a2), R. Seltmann (a2) and E. Igamberdiev (a3)...

Abstract

Mavlyanovite, ideally Mn5Si3, is a new mineral from a lamproite diatreme close to the upper reaches of the Koshmansay river, Chatkal ridge, Uzbekistan. It occurs together with unnamed manganese siliciphosphide and manganese silicicarbide minerals in round to ovoid segregations, up to 10 cm in diameter, in volcanic glass. Segregations of hexagonal prismatic mavlyanovite up to 1–2 mm occur in interstices in the matrix and tiny inclusions (1–2 μm) of alabandite and khamrabaevite occur within mavlyanovite. It is opaque with a metallic lustre, has a dark-grey streak, is brittle with a conchoidal fracture and a near-perfect basal cleavage. VHN100 is 1029–1098 kg/mm2 (Mohs hardness ~7). In plane-polarized reflected light, mavlyanovite is a pale-brownish-grey against the accompanying unnamed manganese silicicarbide (white). Reflectance values and colour data are tabulated. Average results of 19 electronmicroprobe analyses give Mn70.84, Fe 6.12, Si 22.57, Ti 0.15, P 0.18, total 99.86 wt.% leading to an empirical formula of (Mn4.66Fe0.40)5.06(Si2.91Ti0.01P0.02)2.94 based on8 a.p.f.u. The calculated density is 6.06 g/cm3, (on the basis of the empirical formula and unit-cell parameters from the structure determination). Mavlyanovite is hexagonal (P63/mcm) with a 6.8971(7), c 4.8075(4) Å, V 198.05(3) Å3 and Z = 2. The structure has been determined and refined to R1 = 0.017, wR2 = 0.044, GoF = 1.16. Mavlyanovite is the naturally-occurring analogue of synthetic Mn5Si3 which is the parent aristotype structure of the Nowotny intermetallic phases studied extensively by the material-science community. It is also the Mn-dominant analogue of xifengite Fe5Si3. The mineral name honours Academician Gani Arifkhanovich Mavlyanov (1910–1988), for his contributions to the understanding of the geology of Uzbekistan.

Copyright

Corresponding author

References

Hide All
Åmark, K., Boren, B. and Westgren, A. (1936) On the crystal structure of Mn5Si3. Svensk Kemisk Tidskrift, 48, 273276.
Aronsson, B. (1960) A note on the composition and crystal structures of MnB2, Mn3Si, Mn5Si3 and FeSi2. Acta Chemica Scandinavica, 14, 14141418.
Cenzual, K. and Parthé, K.E. (1986) Zr5Ir3 with a deformation superstructure of the Mn5Si3 structure. Acta Crystallographica C, 42, 11011105.
Djuraev, A.D. and Divaev, F.K. (1999) Melanocratic carbonatites — new type of diamond-bearing rocks, Uzbekistan. Pp. 639—642 in: Mineral Deposits: Processes to Processing(C.J. Stanley, A.H. Rankin, R.J. Bodnar, J. Naden, B.W.D. Yardley, A.J. Criddle, R.D. Hagni, A.P. Gize, J. Pasava, A.J. Fleet, Seltmann, R.,Halls, C., Stemprok, M., B. Williamson, R.J. Herrington, R.E.T. Hill, H.M. Prichard, F. Wall, C.T. Williams, I. McDonald, J.J. Wilkinson, D. Cooke, N.J. Cook, B.J. Marshall, P. Spry, Khin Zaw, L. Meinert, K. Sundblad, P. Scott, S.H.B. Clark, E. Valsami-Jones, N.J. Beukes, H.J. Stein, J.L. Hannah, F. Neubauer, D.J. Blundell, D.H.M. Alderton, M.P. Smith, S. Mulshaw and R.A. Ixer, editors). Balkema. Rotterdam, 1468 pp. 2 vols.
Egorov, K.N., Solov’eva, L.V., Kovach, V.P., Men’shagin, Yu.V., Maslovskaya, M.N., Sekerin, A.P. and Bankovskaya, E.V. (2006) Petrological features of olivine-phlogopite lamproites of the Sayan region: Evidence from Sr-Nd isotope and ICP-MS trace-element data. Geochemistry International, 44, 729—735.
Errandonea, D., Santamaria-Perez, D., Vegas, A., Nuss, J., Jansen, M., Rodriguez-Hernandez, P. and Munoz, A. (2008) Structural stability of Fe5Si3 and Ni2Si studied by high-pressure X-ray diffraction and ab initio total-energy calculations. Physical Review B, 76, DOI 094113.
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837—838.
Jambor, J.L. and Puziewicz, J. (1992) New Mineral Names. American Mineralogist, 77, 1116—1121.
Kraus, W. and Nolze, G. (1996) POWDER CELL —a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder diffraction patterns. Journal of Applied Crystallography, 29, 301—303.
Lutkov, V.S., Mogarovskii, V.V. and Lutkova, V.Ya. (2007) Geochemical anomalies in the mantle of the Pamirs and Tien Shan with applications to the deep-seated sources of ore material. Geochemistry International, 45, 451—464.
Nakamura-Messenger, K., Keller, L.P., Clemett, S.J., Jones, J.H., Palma, R.L., Pepin, R.O., Klock, W., Zolensky, M.E. and Messenger, S. (2008) New manganese silicide mineral phase in an interplanetary dust particle. Lunar and Planetary Science, XXXIX, 2103. http://www.lpi.usra.edu/meetings/ lpsc2008/pdf/2103.pdf
Nowotny, H. (1963) Pp. 179—220 in: Electronic Structure and Alloy Chemistry of the Transition Elements(P.A. Beck, editor). John Wiley, New York.
Parthé, E., Jeitschko, W. and Sadagopan, V. (1965) A neutron diffraction study of the Nowotny phase Mo45Si3C 41. Acta Crystallographica, 19, 1031—1037.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A, 64, 112—122.
Shoemaker, C.B. and Shoemaker, D.P. (1978) Refinement of an R phase Mn85 5Si145. Acta Crystallographica B, 34, 701—705.
Spinat, P., Brouty, C., Whuler, A. and Herpin, P. (1975) Etude structurale de la phase Mn8Si2C. Acta Crystallographica B, 31, 541—547.
Stanley, C.J. and Laflamme, J.H.G. (1998) Preparation of specimens for advanced ore-mineral and environmental studies. Chapter 3, pp. 111—121 in: Modern Approaches to Ore and Environmental Mineralogy(L.J. Cabri and D.J. Vaughan, editors). Mineralogical Association of Canada Short Course Series, 27.
Tatarintsev, V.I., Tsymbal, S.N., Sandomirskaya, S.M., Egorova, L.N., Vashchenko, A.N. and Khnyazkov, A.P. (1990) Iron-bearing manganese silicides from the Priazovye (USSR). Mineralogichesky Zhurnal, 12(6), 35—43 [in Ukrainian].
Woolley, A.R. and Church, A.A. (2005) Extrusive carbonatites: A brief review. Lithos, 85, 1—14.
Woolley, A.R and Kjarsgaard, B.A. (2008) Carbonatite occurrences of the world: map and database; Geological Survey of Canada, Open File 5796, 2008; 28 pages (1 sheet) http://geopub.nrcan.gc.ca/ moreinfo_e.php?id=225115
Yu, Z. (1984) Two new minerals gupeiite and xifengite in cosmic dusts from Yanshan. Acta Petrologica Mineralogica et Analytica, 3, 231—238.
Yusupov, R G (1993) Geochemical features and accessory-mineral parageneses for orogenic-region diamonds: The Central and Southern Tien Shan. Geochemistry International, 31, 83—92 [English translation, 1994].

Keywords

Mavlyanovite, Mn5Si3: a new mineral species from a lamproite diatreme, Chatkal Ridge, Uzbekistan

  • R. G. Yusupov (a1), C. J. Stanley (a2), M. D. Welch (a2), J. Spratt (a2), G. Cressey (a2), M. S. Rumsey (a2), R. Seltmann (a2) and E. Igamberdiev (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed