Skip to main content Accessibility help
×
Home

Kummerite, Mn2+Fe3+Al(PO4)2(OH)2·8H2O, a new laueite-group mineral from the Hagendorf Süd pegmatite, Bavaria, with ordering of Al and Fe3+

  • I. E. Grey (a1), E. Keck (a2), W. G. Mumme (a1), A. Pring (a3), C. M. Macrae (a1), A. M. Glenn (a1), C. J. Davidson (a1), F. L. Shanks (a4) and S. J. Mills (a5)...

Abstract

Kummerite, ideally Mn2+Fe3+A1(PO4)2(OH)2.8H2O, is a new secondary phosphate mineral belonging to the laueite group, from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Kummerite occurs as sprays or rounded aggregates of very thin, typically deformed, amber yellow laths. Cleavage is good parallel to ﹛010﹜. The mineral is associated closely with green Zn- and Al-bearing beraunite needles. Other associated minerals are jahnsite-(CaMnMn) and Al-bearing frondelite. The calculated density of kummerite is 2.34 g cm 3. It is optically biaxial (-), α= 1.565(5), β = 1.600(5) and y = 1.630(5), with weak dispersion. Pleochroism is weak, with amber yellow tones. Electron microprobe analyses (average of 13 grains) with H2O and FeO/Fe2O3 calculated on structural grounds and normalized to 100%, gave Fe2O3 17.2, FeO 4.8, MnO 5.4, MgO 2.2, ZnO 0.5, Al2O3 9.8, P2O5 27.6, H2O 32.5, total 100 wt.%. The empirical formula, based on 3 metal apfu is (Mn2+ 0.37Mg0.27Zn0.03Fe2+ 0.33)Σ1.00(Fe3+ 1.06Al0. 94)Σ2.00PO4)1.91(OH)2.27(H2O)7.73. Kummerite is triclinic, P1̄, with the unit-cell parameters of a = 5.316(1) Å, b =10.620(3) Å , c = 7.118(1) Å, α = 107.33(3)°, β= 111.22(3)°, γ = 72.22(2)° and V= 348.4(2) Å3. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I) (hkl)] 9.885 (100) (010); 6.476 (20) (001); 4.942 (30) (020); 3.988 (9) (̄110); 3.116 (18) (1̄20); 2.873 (11) (1̄21). Kummerite is isostructural with laueite, but differs in having Al and Fe3+ ordered into alternate octahedral sites in the 7.1 Å trans-connected octahedral chains.

Copyright

Corresponding author

References

Hide All
Adiwidjaja, G., Friese, K., Klaska, K.-H. and Schlüter, J. (1999) The crystal structure of kastningite (Mn,Fe, Mg)(H2O)4[Al2(OH)2(H2O)2(PO4)2]-2H2O - a new hydroxyl aquated orthophosphate hydrate mineral. Zeitschriftfür Kristallographie, 214, 465468.
Baur, W.H. (1969) The crystal structure of paravauxite, FeAl2(PO4)2(OH2)6(H2O)2. Neues Jahrbuch für Mineralogie Monatshafte, 1969, 430433.
Birch, W.D., Grey, I.E., Mills, S.J., Pring, A. Wilson, N.C. and Keck, E. (2011) Nordgauite, MnAl2(PO4)2(F, OH)2-5.5H2O, a new mineral from the Hagendorf Süd pegmatite, Bavaria, Germany: description and crystal structure. Mineralogical Magazine, 75, 269—278.
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica,B41, 244247.
Cavellec, M., Riou, D. and Ferey, G. (1994) Oxyfluorinated microporous compounds. XI. Synthesis and crystal structure of ULM-10: The first bidimensional mixed-valence iron fluorophosphates with intercalated ethylenediamine. Journal of Solid State Chemistry, 112, 441447.
Cooper, M. and Hawthorne, F.C. (1994) The crystal structure of curetonite, a complex heteropolyhedral sheet mineral. American Mineralogist, 79, 545—549.
Fanfani, I. andZanazzi, P.F. (1971) The crystal structure of butlerite. American Mineralogist, 56, 751757.
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.
Fleck, M., Kolitsch, U. and Hertweck, B. (2002) Natural and synthetic compounds with krohnkite-type chains: review and classification. Zeitschrift für Kristallographie, 217, 435443.
Frondel, C. (1958) Strunzite, a new mineral. Naturwissenschaften, 45, 37.
Galliski, M.A. and Hawthorne, F.C. (2002) Refinement of the crystal structure of ushkovite from Nevados de Palermo, Republica Argentina. The Canadian Mineralogist, 40, 929937.
Gatta, G.D., Vignola, P. and Meven, M. (2014) On the complex H-bonding network in paravauxite, Fe2+Al2(PO4)2(OH)2-8H2O: A single crystal neutron diffraction study. Mineralogical Magazine, 78, 841850.
Grey, I.E., Mumme, W.G., Neville, S.M., Wilson, N.C. and Birch, W.D. (2010) Jahnsite-whiteite solid solutions and associated minerals in the phosphate pegmatite at Hagendorf-Süd, Bavaria, Germany. Mineralogical Magazine, 74, 969—978.
Grey, I.E., MacRae, C.M., Keck, E. and Birch, W.D. (2012) Aluminium-bearing strunzite derived from jahnsite at the Hagendorf-Süd pegmatite, Germany. Mineralogical Magazine, 76, 11651174.
Grey, I.E., Keck, E., Mumme, W.G., Macrae, C.M., Price, J.R., Glenn, A.M. and Davidson, C.J. (2015) Crystallographic ordering of aluminium in laueite at Hagendorf-Süd. Mineralogical Magazine, 79, 309319.
Hawthorne, F.C. (1983) Graphical enumeration of polyhedral clusters. Acta Crystallographica,A39, 724736.
Hawthorne, F.C. (1985) Towards a structural classification of minerals: The VIMIVT2Φn minerals. American Mineralogist, 70, 455473.
Hawthorne, F.C. (1988) Sigloite: The oxidation mechanism in [M2 +(PO4)2(OH)2(H2O)2]2∼ structures. Mineralogy and Petrology, 38, 201—211.
Kampf, A.R., Hughes, J.M., Nash, B. and Marty, J. (2014) Kokinosite, Na2Ca2(V10O26)'24H2O, a new decava-nadate mineral species from the St. Jude mine, Colorado: crystal structure and descriptive mineralogy. The Canadian Mineralogist, 52, 1525.
Krivovichev, S.V. (2004) Topological and geometrical isomerism in minerals and inorganic compounds with laueite-type heteropolyhedral sheets. Neues Jahrbuch für Mineralogie Monatshafte, 2004, 209220.
Laugier, J. and Bochu, B. (2000) LMGP-Program for the interpretation of X-ray experiments.INPG/Laboratoire des Matériaux et du Génie Physique. St Martin d'Heres, France.
Leavens, P.B. and Rheingold, A.L. (1988) Crystal structures of gordonite, MgAl2(PO4)2(OH)2(H2O)6(H2O)2, and its Mn analog. Neues Jahrbuch für Mineralogie Monatshafte, 1988, 265270.
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O—H-0 hydrogen bond lengths in minerals. Pp. 103—115 in: Hydrogen Bond Researc.(P. Schuster and W. Mikenda, editors). Springer-Verlag, Wien.
Locock, A.J. and Burns, P.C. (2003) The crystal structure of bergenite, a new geometrical isomer of the phosphuranylite group. The Canadian Mineralogist, 41,91101.
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.
Meisser, N., Brugger, J., Krivovichev, S., Armbruster, T. and Favreau, G. (2012) Description and crystal structure of maghrebite, MgAl2(ASO4)2(OH)2-8H2O, from Aghbar, Anti-Atlas, Morocco: first arsenate in the laueite mineral group. European Journal of Mineralogy, 24, 717726.
Mills, S.J. and Grey, I.E. (2015) Nomenclature for the laueite supergroup. Mineralogical Magazine, 79, 243246.
Moore, P.B. (1965) The crystal structure of laueite, Mn2+Fe3 +2(OH)2(PO4)2(H2O)6 • 2H2O.American Mineralogist, 50, 18841892.
Moore, P.B. (1975) Laueite, pseudolaueite, stewartite and metavauxite: A study in combinatorial polymorphism. Neues Jahrbuch für Mineralogie Abhandlugen, 1975, 148159.
Moore, P.B. and Araki, T(1974) Stewartite, Mn2+Fe2 +(OH)2(H2O)6[PO4]3-2H2O: Its atomic arrangement. American Mineralogist, 59, 1272—1276.
Scholz, R., Chukanov, N.V., Menezes Filho, L.A.D., Attencio, D., Lagoeiro, L., Belotti, F.M., Chaves, M.L. S.C., Romano, A.W., Brandao, P.R., Belakovskiy, D.I. and Pekov, I. (2014) Césarferreiraite, Fe2+Fe3 + 2-(AsO4)2(OH)2-8H2O, from Eduardo mine, Conselheiro Pena, Minas Gerais, Brazil: Second arsenate in the laueite mineral group. American Mineralogist, 99, 607611.
Segeler, C.G., Moore, P.B., Dyar, M.D., Leans, F. and Ferraiolo, J.A. (2012) Ferrolaueite, a new mineral from Monmouth County, New Jersey, USA. Australian Journal of Mineralogy, 16, 69—76.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica,A64, 112—122.
Sheldrick, G.M. (2015) SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallographica, A71,38.
Strunz, H. (1954) Laueit, MnFe2 n(PO4)2(OH)2-8H2O, ein neues Mineral. Naturwissenschaften, 41, 256.
Wang, X., Liu, L., Cheng, H., Ross, K. and Jacobson, A.J. (2000) Synthesis and crystal structures of [H3N (CH2)2NH3]NbMOF(PO4)2(H2O)2, M = Fe, Co and [H3N(CH2)2NH3]Ti(Fe0.9Cr0.1)F1.3O0.7)(H0.3PO4)2(H2O)2. Journal of Materials Chemistry, 10, 12031208.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Grey et al. supplementary material
CIF

 Unknown (188 KB)
188 KB

Kummerite, Mn2+Fe3+Al(PO4)2(OH)2·8H2O, a new laueite-group mineral from the Hagendorf Süd pegmatite, Bavaria, with ordering of Al and Fe3+

  • I. E. Grey (a1), E. Keck (a2), W. G. Mumme (a1), A. Pring (a3), C. M. Macrae (a1), A. M. Glenn (a1), C. J. Davidson (a1), F. L. Shanks (a4) and S. J. Mills (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed