Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-26T22:12:47.727Z Has data issue: false hasContentIssue false

Kerimasite, {Ca3}[Zr2](SiFe3+2)O12 garnet from the Vysoká-Zlatno skarn, Štiavnica stratovolcano, Slovakia

Published online by Cambridge University Press:  02 January 2018

Pavel Uher*
Affiliation:
Department of Mineralogy and Petrology, Comenius University, Mlynská dolina G, 842 15 Bratislava, Slovakia
Stanislava Milovská
Affiliation:
Geological Institute, Slovak Academy of Sciences, Banská Bystrica branch, Ďumbierska 1, 974 01 Banská Bystrica, Slovakia
Rastislav Milovský
Affiliation:
Geological Institute, Slovak Academy of Sciences, Banská Bystrica branch, Ďumbierska 1, 974 01 Banská Bystrica, Slovakia
Peter Koděra
Affiliation:
Department of Geology of Mineral Deposits, Comenius University, Mlynská dolina G, 842 15 Bratislava, Slovakia
Peter Bačík
Affiliation:
Department of Mineralogy and Petrology, Comenius University, Mlynská dolina G, 842 15 Bratislava, Slovakia
Vladimír Bilohuščin
Affiliation:
Department of Mineralogy and Petrology, Comenius University, Mlynská dolina G, 842 15 Bratislava, Slovakia
*

Abstract

Kerimasite {Ca3}[Zr2](SiFe23+)O12, a rare member of the garnet supergroup, has been identified in association with andradite–grossular and their hydrated analogues, monticellite, perovskite, clintonite, anhydrite, hydroxylellestadite–fluorellestadite, spinel, magnetite, brucite, valeriite and other minerals from a Ca-Mg skarn in the exocontact of a granodiorite porphyry intrusion in Vysoká-Zlatno Cu-Au skarn-porphyry deposit, the Štiavnica stratovolcano, Central Slovakia. Kerimasite forms euhedral-to-anhedral crystals, 2 to 100 μm across with 0.73–1.62 atoms per formula unit (a.p.f.u.) Zr (16.2–33.6 wt.% ZrO2), 0.34–0.66 a.p.f.u. Ti (4.6–9.3 wt.% TiO2), 0.01 to 0.05 a.p.f.u. Hf (0.4–1.7 wt.% HfO2: the largest Hf content reported in kerimasite), and small amounts of Sn, Sc and Nb (≤0.02 a.p.f.u.). Tetrahedral Si (0.99–1.67 a.p.f.u.; 9.8–18.1 wt.% SiO2) is balanced by 0.85–1.26 a.p.f.u. Fe3+ and by 0.46–0.76 a.p.f.u. Al. The crystals commonly show regular, oscillatory concentric zoning or irregular patchy internal textures due to Zr, Ti, Fe, Al and Si variations during growth or partial alteration and dissolution-reprecipitation. The main substitutions in kerimasite are Y(Fe,Sc)3+ + ZSi4+ = Y(Zr,Ti,Hf,Sn)4+ + Z(Fe,Al)3+ and Ti4+ = Zr4+. Associated andradite locally contains irregular Ti- and Zr-rich zones with ≤11 wt.% TiO2 and ≤4.4 wt.% ZrO2. In comparison with common Ca-rich garnets, the micro-Raman spectrum of kerimasite shows that many bands shift towards much lower wavenumbers, either due to Fe3+ substitution on the Z site or to the strong influence of neighbouring octahedrally-coordinated Zr4+ on internal vibrations of tetrahedra that share oxygens. The formation of kerimasite, monticellite, perovskite and other phases indicate a relatively Ca-rich and Si, Al-poor environment, analogous to other known occurrences of Ca-Zr garnets (Ca-rich skarns and xenoliths, carbonatites). Kerimasite and associated skarn minerals originated during contact-thermal metamorphism of Upper Triassic marl slates with limestone, dolomite, anhydrite and gypsum by Miocene granodiorite porphyry at T ≈ 700°C and P ≈ 50–70 MPa.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Hermezi, , McKie, D. and Hall, A.J. (1986) Baghdadite, a new calcium zirconium silicate mineral from Iraq. Mineralogical Magazine, 50, 119123.CrossRefGoogle Scholar
Aroyo, M.I., Perez-Mato, J.M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. and Wondratschek, H. (2006a) Bilbao Crystallographic Server I: Databases and crystallographic computing programs. Zeitschrift für Kristallographie, 221, 1527.Google Scholar
Aroyo, M.I., Kirov, A., Capillas, C., Perez-Mato, J.M. and Wondratschek, H. (2006b) Bilbao Crystallographic Server II: Representations of crystallographic point groups and space groups. Acta Crystallographica, A62, 115128.CrossRefGoogle Scholar
Aroyo, M.I., Perez-Mato, J.M., Orobengoa, D., Tasci, E., de la Flor, G. and Kirov, A. (2011) Crystallography online: Bilbao Crystallographic Server. Bulgarian Chemical Communications, 43, 183197.Google Scholar
Burian, J. and Smolka, J. (1982) Geology of the porphyry copper deposit Zlatno. Mineralia Slovaca, 14, 517538. [in Slovak]. Chakhmouradian, A.R. and McCammon, C.A. (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Physics and Chemistry of Minerals, 32, 277289.Google Scholar
Chernyshev, I.V., Konečný, V., Lexa, J., Kovalenker, V.A., Jeleň , S., Lebedev, V.A. and Goltsman, Y.V. (2013) K-Ar and Rb-Sr geochronology and evolution of the Štiavnica Stratovolcano (Central Slovakia). Geologica Carpathica, 64, 327351.CrossRefGoogle Scholar
Chopelas, A. (2005) Single crystal Raman spectrum of uvarovite, Ca3Cr2Si3O12. Physics and Chemistry of Minerals, 32, 525530.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1997) Rockforming minerals. Vol. 1A Orthosilicates. 2nd edition. The Geological Society, London, pp. 919.Google Scholar
Downs, R.T. and Hall-Wallace, M. (2003) The American Mineralogist crystal structure database. American Mineralogist, 88, 247250.Google Scholar
Galuskin, E. (2005) Minerals of the Vesuvianite Group from the Achtarandite Rocks (Wiluy River, Yakutia). University of Silesia Publishing House, Katowice, Poland, pp. 192 [in Polish]. Galuskina, I.O. and Galuskin, E.V. (2003) Garnets of the hydrogrossular-“hydroandradite”-“hydroschorlomite” series. Special Papers of the Mineralogical Society of Poland, 22, 5457.Google Scholar
Galuskina, I.O., Galuskin, E.V., Dzierzanowski, P., Armbruster, T. and Kozanecki, M. (2005) A natural scandian garnet. American Mineralogist, 90, 16881692.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Lazic, B., Armbruster, T., Dzierżanowski, P., Prusik, K. and Wrzalik, R. (2010a) Eringaite, Ca3Sc2(SiO4)3, a new mineral of the garnet group. Mineralogical Magazine, 74, 365373.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Armbruster, T., Lazic, B., Dzierżanowski, P., Gazeev, V.M., Prusik, K., Pertsev, N.N., Winiarski, A., Zadov, A.E., Wrzalik, R. and Gurbanov, A.G. (2010b) Bitikleite-(SnAl) and bitikleite-(ZrFe): new garnets from xenoliths of the Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 95, 959967.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Armbruster, T., Lazic, B., Kusz, J., Dzierżanowski, P., Gazeev, V.M., Pertsev, N.N., Prusik, K., Zadov, A.E., Winiarski, A., Wrzalik, R. and Gurbanov, A.E. (2010c) Elbrusite-(Zr)-a new uranian garnet from the Upper Chegem Caldera, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 95, 11721181.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Dzierżanowski, P., Gazeev, V.M., Prusik, K., Pertsev, N.N., Winiarski, A., Zadov, A.E. and Wrzalik, R. (2010d) Toturite Ca3Sn2Fe2SiO12-a new mineral species of the garnet group. American Mineralogist, 95, 13051311.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Prusik, K., Gazeev, V.M., Pertsev, N.N. and Dzierżanowski, P. (2013a) Irinarassite Ca3Sn2SiAl2O12-new garnet from the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia. Mineralogical Maazine, 77, 28572866.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Kusz, J., Dzierżanowski, P., Prusik, K., Gazeev, V.M., Pertsev, N.N. and Dubrovinsky, L. (2013b) Dzhuluite, Ca3SbSnFe3+ 3 O12, a new bitikleite-group garnet from the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy, 25, 231239.CrossRefGoogle Scholar
Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V. and Hå lenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785811.CrossRefGoogle Scholar
Gwalani, L.G., Rock, N.M.S., Ramasamy, R., Griffin, B.J. and Mulai, B.P. (2000) Complexly zoned Ti-rich melanite-schorlomite garnets from Ambadungar carbonatite-alkalic complex, Deccan Igneous Province, Gujarat State, Western India. Journal of Asian Earth Sciences, 18, 163176.CrossRefGoogle Scholar
Haynes, E.A., Moecher, D.P. and Spicuzza, M.J. (2003) Oxygen isotope composition of carbonates, silicates, and oxides in selected carbonatites: constraints on crystallization temperatures of carbonatite magmas. Chemical Geology, 193, 4357.CrossRefGoogle Scholar
Ito, J. and Frondel, C. (1967) Synthetic zirconium and titanium garnets. American Mineralogist, 52, 773781.Google Scholar
Jamtveit, B., Dahlgren, S. and Austrheim, H. (1997) High-grade contact metamorphism of calcareous rocks from the Oslo Rift, Southern Norway. American Mineralogist, 82, 12411254.CrossRefGoogle Scholar
Katerinopoulou, A., Katerinopoulos, A., Voudouris, P., Bieniok, A., Musso, M. and Amthauer, G. (2009) A multi-analytical study of the crystal structure of unusual Ti-Zr-Cr-rich andradite from the Maronia skarn, Rhodope massif, western Thrace, Greece. Mineralogy and Petrology, 95, 113124.CrossRefGoogle Scholar
Koděra, P., Uher, P., Ozdín, D., Kollárová, V. and Lexa, J. (2009) Monticellite, clintonite and hydroxylellestadite-fluorellestadite: rare skarn minerals from the Vysoká-Zlatno Cu-Au skarn-porphyry deposit (Štiavnica stratovolcano). Mineralia Slovaca, 41, 169178. [in Slovak].Google Scholar
Koděra, P., Lexa, J. and Fallick, A.E. (2010) Formation of the Vysoká-Zlatno Cu-Au skarn-porphyry deposit, Slovakia. Mineralium Deposita, 45, 817843.CrossRefGoogle Scholar
Kohút, M. and Danišík, M. (2013) Geochronometry of the granitic rocks from the Central Slovakian Neovolcanic Field-an evidence for rapid uplift. Pp. 2526. in: Geological Evolution of the Western Carpathians: New Ideas in the Field of Interregional Correlations (I. Broska and A. Tomašových (editors). Abstract book. Geological Institute, Slovak Academy of Sciences, Bratislava.Google Scholar
Kolesov, B.A. and Geiger, C.A. (1998) Raman spectra of silicate garnets. Physics and Chemistry of Minerals, 25, 142151.CrossRefGoogle Scholar
Konečný, P. (2002) Evolution of magmatic reservoir underneath the Štiavnica stratovolcano. Unpublished PhD thesis, Comenius University, Bratislava, pp. 273 [in Slovak].Google Scholar
Koritnig, S., Rösch, H., Schneider, A. and Seifert, F. (1978) The titanium-zirconium garnet of calc-silicate rock inclusions of the gabbro of Radautal, Harz Mountains F. R. Germany. Tschermak’s Mineralogische und Petrographische Mitteilungen, 25, 305313. [in German].Google Scholar
Kroumova, E., Aroyo, M.I., Perez-Mato, J.M., Kirov, A., Capillas, C., Ivantchev, S. and Wondratschek, H. (2003) Bilbao Crystallographic Server: useful databases and tools for phase transitions studies. Phase Transitions, 76, 155170.CrossRefGoogle Scholar
Lager, G.A., Armbruster, T., Rotella, F.J. and Rossman, G.R. (1989) OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. American Mineralogist, 74, 840851.Google Scholar
Lexa, J., Štohl, J. and Konečný, V. (1999) Banská Štiavnica ore district: relationship among metallogenetic processes and geological evolution of the central volcanic zone. Mineralium Deposita, 34, 639654.CrossRefGoogle Scholar
Lupini, L., Williams, C.T. and Woolley, A.R. (1992) Zrrich garnet and Zr-and Th-rich perovskite from the Polino carbonatite, Italy. Mineralogical Magazine, 56, 581586.CrossRefGoogle Scholar
Ma, C. and Krot, A.N. (2014) Hutcheonite, Ca3Ti2(SiAl2)O12, a new garnet mineral from the Allende meteorite: an alteration phase in a Ca-Alrich inclusion. American Mineralogist, 99, 667670.CrossRefGoogle Scholar
Milton, C., Ingram, B.L. and Blade, L.V. (1961) Kimzeyite, a zirconium garnet from Magnet Cove, Arkansas. American Mineralogist, 46, 533548.Google Scholar
Munno, R., Rossi, G. and Tadini, C. (1980) Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, Italy. American Mineralogist, 65, 188191.Google Scholar
Pascal, M.-L., Fonteilles, M., Verkaeren, J., Piret, R. and Marincea, S-. (2001) The melilite-bearing hightemperature skarns of the Apuseni Mountains, Carpathians, Romania. The Canadian Mineralogist, 39, 14051434.CrossRefGoogle Scholar
Passaglia, E. and Rinaldi, R. (1984) Katoite, a new member of the Ca3Al2(SiO4)3-Ca3Al2(OH)12 series and a new nomenclature for the hydrogrossular group of minerals. Bulletin de la Société Française de Minéralogie et de Cristallographie, 107, 605618.Google Scholar
Peters, T. (1965) A water-bearing andradite from the Totalp serpentine (Davos, Switzerland). American Mineralogist, 50, 14821486.Google Scholar
Pinet, M. and Smith, D.C. (1993) Raman microspectrometry of garnets X3Y2Z3O12: I. Natural calcian uvarovite-grossular-andradite series. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 2140. [in French].Google Scholar
Platt, R.G. and Mitchell, R.H. (1979) The Marathon Dikes. I: Zirconium-rich titanian garnets and manganoan magnesian ulvöspinel-magnetite spinels. American Mineralogist, 64, 546550.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ (j rZ) procedure for improved quantitative microanalysis. Pp. 104106. in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, USA.Google Scholar
Schingaro, E., Scordari, F., Capitanio, F., Parodi, G., Smith, D.C. and Mottana, A. (2001) Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy. European Journal of Mineralogy, 13, 749759.CrossRefGoogle Scholar
Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. Blackwell, Oxford, pp. 312.Google Scholar
Tracy, R.J., Jaffe, H.W. and Robinson, P. (1978) Monticellite marble at Cascade Mountain, Adirondack Mountains, New York. American Mineralogist, 63, 991999.Google Scholar
Uher, P., Koděra, P. and Vaculovič, T. (2011) Perovskite from Ca-Mg skarn-porphyry deposit Vysoká-Zlatno, Štiavnica stratovolcano, Slovakia. Mineralia Slovaca, 43, 247254.Google Scholar
Ulrych, J., Povondra, P., Pivec, E., Rutšek, J. and Sitek, J. (1994) Compositional evolution of metasomatic garnet in melilitic rocks of the Osečná Complex, Bohemia. The Canadian Mineralogist, 32, 637647.Google Scholar
Walter, L.S. (1963a) Experimental studies on Bowen’s decarbonization series. I: P-T univariant equilibria of the ‘monticellite’ and ‘akermanite’ reactions. American Journal of Science, 261, 488500.CrossRefGoogle Scholar
Walter, L.S. (1963b) Experimental studies on Bowen’s decarbonization series. II: P-T univariant equilibria of reaction forsterite + calcite = monticellite + periclase + CO2. American Journal of Science, 261, 773779.CrossRefGoogle Scholar
Wenzel, T., Baumgartner, L.P., Brügmann, G.E., Konnikov, E.G. and Kislov, E.V. (2002) Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (North Baikal Region, Russia). Journal of Petrology, 43, 20492074.CrossRefGoogle Scholar
Whittle, K.R., Lumpkin, G.R., Berry, F.J., Oates, G., Smith, K.L., Yudintsev, S. and Zaluzec, N.J. (2007) The structure and ordering of zirconium and hafnium containing garnets studied by electron channelling, neutron diffraction and Mössbauer spectroscopy. Journal of Solid State Chemistry, 180, 785791.CrossRefGoogle Scholar
Williams, C.T. and Gieré, R. (1988) Metasomatic zonation of REE in zirconolite from a marble skarn at the Bergell contact aureole (Switzerland/Italy). Schweizerische Mineralogische und Petrographische Mitteilungen, 68, 133140.Google Scholar
Yamakawa, J., Henmi, C. and Kawahara, A. (1993) Synthesis and X-ray studies of kimzeyite, Ca3Zr2(Al,Fe)2SiO12. Mineralogical Journal, 16, 371377.CrossRefGoogle Scholar
Zaitsev, A.N., Williams, C.T., Britvin, S.N., Kuznetsova, I.V., Spratt, J., Petrov, S.V. and Keller, J. (2010) Kerimasite, Ca3Zr2(Fe3+ 2 Si)O12, a new garnet from carbonatites of Kerimasi volcano and surrounding explosion craters, Northern Tanzania. Mineralogical Magazine, 74, 803820.CrossRefGoogle Scholar