Skip to main content Accessibility help

The importance of cation–cation repulsion in the zircon–reidite phase transition and radiation-damaged zircon

  • Makoto Tokuda (a1) (a2), Akira Yoshiasa (a1) (a2), Hiroshi Kojitani (a3), Saki Hashimoto (a3), Seiichiro Uehara (a4), Tsutomu Mashimo (a1), Tsubasa Tobase (a2) and Masaki Akaogi (a3)...


Single crystals of synthetic reidite and natural radiation-damaged zircon from Okueyama, Japan were investigated using X-ray diffraction. The pressure-induced zircon–reidite transition is described by the twisting and translations of SiO4 tetrahedra with disappearance of the SiO4–ZrO8 shared edges. The lattice of radiation-damaged zircons expands mainly from α-decays of radioactive elements such as U and Th. Although old radiation-damaged zircons show anomolous lattice distortion, young radiation-damaged zircons do not show such distortions. These distortions are caused by thermal recovery that suppresses the Si4+–Zr4+ repulsion between the SiO4 tetrahedron and ZrO8 dodecahedron. These changes in structure can be understood by considering the cation–cation repulsion between the SiO4–ZrO8 shared edges.


Corresponding author

*Author for correspondence: Makoto Tokuda, Email:


Hide All

Associate Editor: Michael Rumsey



Hide All
Akaogi, M., Hashimoto, S. and Kojitani, H. (2018) Thermodynamic properties of ZrSiO4 zircon and reidite and of cotunnite-type ZrO2 with application to high-pressure high-temperature phase relations in ZrSiO4. Physics of the Earth and Planetary Interior, 281, 17.
Brøgger, W.C. (1893) Amorf. Pp. 742743 in: Salmonsens Illustre de Konverssationslexikon, 1. Copenhagen.
Errandonea, D. and Manjón, F.J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53, 711773.
Fukunaga, O. and Yamaoka, S. (1979) Phase transformation in ABO4 type compounds under high pressure. Physical Chemistry of Minerals, 5, 167177.
Glass, B.P. and Liu, S. (2001) Discovery of high-pressure ZrSiO4 polymorph in naturally occurring shock-metamorphosed zircons. Geology, 29, 371373.
Hamberg, A. (1914) Die radioaktiven Substanzen und die geologische Forschung. Geologiska Föreningens Stockholm Förhandlingar, 36, 3196.
Hazen, R.M., and Finger, L.W. (1979) Crystal structure and compressibility of zircon at high pressure. American Mineralogist, 64, 196201.
Kolesov, B.A., Geiger, C.A. and Armbruster, T. (2001) The dynamic properties of zircon studied by single-crystal X-ray diffraction and Raman spectroscopy. European Journal of Mineralogy, 13, 939948.
Kusaba, K., Syono, Y., Kikuchi, M. and Fukuoka, K. (1985) Shock behavior of zircon: phase transition to scheelite structure and decomposition. Earth and Planetary Science Letters, 72, 433439.
Kusaba, K., Yagi, T., Kikuchi, M. and Syono, Y. (1986) Structural considerations on the mechanism of the shock-induced zircon-scheelite transition in ZrSiO4. Journal of Physics and Chemistry of Solids, 47, 675679.
Liu, L.G. (1979) High-pressure phase transformations in baddeleyite and zircon, with geophysical implications. Earth and Planetary Science Letters, 44, 390396.
Mashimo, T., Nagayama, K., and Sawaoka, A. (1983) Shock compression of zirconia ZrO2 and zircon ZrSiO4 in the pressure range up to 150 GPa. Physics and Chemistry of Minerals, 9, 237247.
Momma, K. and Izumi, F. (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.
Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R. and Weber, W.J. (1991) Alpha-decay event damage in zircon. American Mineralogist, 76, 15101532.
Nakatsuka, A., Yoshiasa, A. and Takeno, S. (1995) Site preference of cations and structural variation in Y3Fe5–xGaxO12 (0 ≤ x ≤ 5) solid solutions with garnet structure. Acta Crystallographica, B51, 737745.
Nakatsuka, A., Yoshiasa, A. and Yamanaka, T. (1999) Cation distribution and crystal chemistry of Y3Al5–xGaxO12 (0 < x < 5) garnet solid solutions. Acta Crystallographica, B55, 266272.
Ono, S., Funakoshi, K., Nakajima, Y., Tange, Y. and Katsura, T. (2004) Phase transition of zircon at high P-T conditions. Contributions to Mineralogy and Petrology, 147, 505509.
Pauling, L. (1929) Pauling rules for ionic structures. Journal of the American Chemical Society, 51, 10101026.
Pauling, L. (1960) The Nature of the Chemical Bond, 3rd edition, p. 93. Cornell University Press, Ithaca, USA.
Reid, A.F. and Ringwood, A.E. (1969) Newly observed high pressure transformations in Mn2O3, GaAl2O4, and ZrSiO4. Earth and Planetary Science Letters, 6, 205208.
Ríos, S., Malcherek, T., Salje, E.K.H. and Domeneghetti, C. (2000) Localized defects in radiation-damaged zircon. Acta Crystallographica, B56, 947952.
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) The Structure of zircon: A comparison with garnet. American Mineralogist, 56, 782790.
Sheldrick, G.M. (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.
Shibata, K. (1978) Contemporaneity of Tertiary granites in the outer zone of Southwest Japan. Chishitsu Chosajo Geppo, 29, 551554.
Stubican, V.S. and Roy, R. (1959) High-pressure scheelite-structure polymorphs of rare-earth vanadates and arsenates. Zeitschrift für Kristallographie, 101, 451456.
Takahashi, M. (1986) Anatomy of a middle Miocene Valles-type caldera cluster: geology of the Okueyama volcano-plutonic complex, southwest Japan. Journal of Volcanology and Geothermal Research, 29, 3370.
Tange, Y. and Takahashi, E. (2004) Stability of the high-pressure polymorphs of zircon (ZrSiO4) in the deep mantle. Physics of the Earth Planetary Interiors, 143, 233–229.
Tokuda, M., Yoshiasa, A., Mashimo, T. and Iishi, K. and Nakatsuka, A. (2018) The vanadate garnet Ca2NaCd2V3O12: a single-crystal X-ray diffraction study. Acta Crystallographica, C74, 460464.
Weber, W.J, Ewing, R.C., Catlow, C.R.A., Díaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R. and Zinkle, S.J. (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. Journal of Materials Research, 13, 14341484.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Tokuda et al. supplementary material
Tokuda et al. supplementary material 1

 Unknown (57 KB)
57 KB

The importance of cation–cation repulsion in the zircon–reidite phase transition and radiation-damaged zircon

  • Makoto Tokuda (a1) (a2), Akira Yoshiasa (a1) (a2), Hiroshi Kojitani (a3), Saki Hashimoto (a3), Seiichiro Uehara (a4), Tsutomu Mashimo (a1), Tsubasa Tobase (a2) and Masaki Akaogi (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.