Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T10:52:47.817Z Has data issue: false hasContentIssue false

High-pressure Raman study of CH4 in melanophlogite (type I clathrate)

Published online by Cambridge University Press:  05 July 2018

G. D. Gatta*
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Milano, Via Botticelli 23, I-20133 Milan, Italy CNR - Istituto di Cristallografia, Sede di Bari, Via G. Amendola 122/o, I-70126 Bari, Italy
D. Bersani
Affiliation:
Dipartimento di Fisica e Scienze della Terra, Universitá di Parma, Parco Area delle Scienze 7/A-157/A, I-43124 Parma, Italy
P. P. Lottici
Affiliation:
Dipartimento di Fisica e Scienze della Terra, Universitá di Parma, Parco Area delle Scienze 7/A-157/A, I-43124 Parma, Italy
M. Tribaudino
Affiliation:
Dipartimento di Fisica e Scienze della Terra, Universitá di Parma, Parco Area delle Scienze 7/A-157/A, I-43124 Parma, Italy

Abstract

The evolution with pressure of the CH4 vibrational modes related to C–H stretching has been followed by in situ Raman spectroscopy on a single crystal of cubic melanophlogite from Varano Marchesi (Parma, Italy) containing only CH4 in the cages. The sample was compressed hydrostatically in a diamond anvil cell up to 6.5 GPa, using a non-penetrating P-transmitting medium. Two modes at 2900 and 2910 cm–1 (ν1 and ν2) were followed in response to the applied pressure, corresponding to C–H stretching of CH4 enclathrated in the 51262 and 512 cages, respectively. A change in slope of the frequency vs. P linear trend of the sharper peak at 2900 cm–1, observed between 1 and 1.5 GPa, is interpreted as evidence of the P-induced cubic to tetragonal transition, previously observed by X-ray diffraction at P ≥ 1.2 GPa. At pressures below the transition, the shift with P of the CH4 modes is comparable to that observed in methane ice hydrate, which becomes hexagonal at P ≥ 0.9 GPa however. The ratio of the integrated areas of the two C–H stretching Raman peaks does not change significantly with pressure across the transition. At P ≥ 5.1 GPa, a shoulder appears, close to the n1 peak, along with a slight change in slope of peak shift and peak broadening. The shoulder is maintained in decompression down to P = 4.4 GPa, showing slight hysteresis. At the same pressures however, X-ray diffraction shows no evidence of a phase transition, suggesting that a rearrangement of CH4 configuration occurs, without any effect on the tetrahedral framework.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, R.J., Bujak, M., Zhao, J., Gatta, G.D. and Jacobsen S.D. (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. Journal of Applied Crystallography, 40, 2632.CrossRefGoogle Scholar
Angel, R.J., Sochalski-Kolbus, L.M. and Tribaudino, M. (2012) Tilts and tetrahedra: the origin of anisotropy of feldspars. American Mineralogist, 97, 765778.CrossRefGoogle Scholar
Ajani, J.I., Keith, H., Blakers, M., Mackey, B.G. and King, H.P. (2013) Comprehensive carbon stock and flow accounting: a national framework to support climate change mitigation policy. Ecological Economics, 89, 6172.CrossRefGoogle Scholar
Beard, A.D., Howard, K., Carmody, L. and Jones, A.P. (2013) The origin of melanophlogite, a clathrate mineral, in natrocarbonatite lava at Oldoinyo Lengai, Tanzania. American Mineralogist, 98, 19982006.CrossRefGoogle Scholar
Chen, P., Zha, C., Chen, X., Shu, J., Hemley, R.J. and Mao, H. (2011) Raman study of phase transitions in compressed methane using moissanite anvil cells. Physical Review B, 84, 104110.Google Scholar
Choukroun, M., Grasset, O., Tobie, G. and Sotin, C. (2010) Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan. Icarus, 205, 581593.CrossRefGoogle Scholar
Di Profio, P., Arca, S., Germani, R. and Savelli, G. (2007) Novel nanostructured media for gas storage and transport: clathrate hydrates of methane and hydrogen. Journal of Fuel Cell Science and Technology, 4, 4955.CrossRefGoogle Scholar
Eslamimanesh, A., Mohammadi, A.H., Richon, D., Naidoo, P. and Ramjugernath, D. (2012) Application of gas hydrate formation in separation processes: a review of experimental studies. The Journal of Chemical Thermodynamics, 46, 6271.CrossRefGoogle Scholar
Gatta, G.D. (2008) Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure. Zeitschrift für Kristallographie, 223, 160170.Google Scholar
Gatta, G.D. (2010) Extreme deformation mechanisms in open-framework silicates at high-pressure: evidence of anomalous inter-tetrahedral angles. Microporous and Mesoporous Materials, 128, 7884.CrossRefGoogle Scholar
Geiger, C.A., Dachs, E. and Nagashima, M. (2008) Heat capacity and entropy of melanophlogite: moleculecontaining porosils in nature. American Mineralogist, 93, 11791182.CrossRefGoogle Scholar
Gies, H. (1983) Studies on clathrasils: III. Crystal structure of melanophlogite, a natural clathrate compound of silica. Zeitschrift für Kristallographie, 164, 247257.Google Scholar
Gies, H., Gerke, H. and Liebau, F. (1982) Chemical composition and synthesis of melanophlogite, a clathrate compound of silica. Neues Jahrbuch für Mineralogie, Monatshefte, 119124.Google Scholar
Handa, Y.P. (2001) Stable methane hydrate above 2 GPa and the source of Titan’s atmospheric methane. Nature, 410, 661663.Google Scholar
Hirai, H., Uchihara, Y., Fujihisa, H., Sakashita, M., Katoh, E., Aoki, K., Nagashima, K., Yamamoto, Y. and Yagi, T. (2001) High-pressure structures of methane hydrate, observed up to 8 GPa at room temperature. Journal of Chemical Physics, 115, 70667070.CrossRefGoogle Scholar
Kolesov, A.B. and Geiger, A.C. (2003) Molecules in the SiO2-clathrate melanophlogite: a single-crystal Raman study. American Mineralogist, 88, 13641368.CrossRefGoogle Scholar
Liang, Y., Ogundare, F.O., Miranda, C.R., Christie, J.K. and Scandolo, S. (2011) Structural properties and phase transitions in a silica clathrate. Journal of Chemical Physics, 134, 074506074513.CrossRefGoogle Scholar
Liu, S., Welch, M.D. and Klinowski, J. (1997) An NMR study of phase transitions in guest-free silica clathrate melanophlogite. Journal of Physical Chemistry B, 101, 28112814.CrossRefGoogle Scholar
Mao, H.K., Xu, J. and Bell, P. M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions, Journal of Geophysical Research B, 91, 46734676.CrossRefGoogle Scholar
Martos-Villa, R., Misaela, F.M., Mata, M.P. and Sainz- Díaz, C.I. (2013) Crystal structure, stability and spectroscopic properties of methane and CO2 hydrates, Journal of Molecular Graphics and Modelling, 44, 253265.CrossRefGoogle Scholar
Miletich, R., Allan, D.R. and Kuhs, W.F. (2000) Highpressure single-crystal techniques. Pp. 445520. in: High-Temperature and High Pressure Crystal Chemistry (R.M. Hazen and R.T. Downs, editors). Reviews in Mineralogy and Geochemistry, 41. Mineralogical Society of America and Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Momma, K. (2014) Clathrate compounds of silica. Journal of Physics: Condensed Matter, 26, 103203.Google ScholarPubMed
Momma, K., Ikeda, T., Nishikubo, K., Takahashi, N., Honma, C., Takada, M., Furukawa, Y., Nagase, T. and Kudoh, Y. (2011) New silica clathrate minerals that are isostructural with natural gas hydrates. Nature Communications, 2, 196197.CrossRefGoogle ScholarPubMed
Nakagawa, T. and Kihara, K. (2006) Higher order thermal motion tensor analysis and atom disorder in cubic melanophlogite. Journal of Mineralogical and Petrological Sciences, 101, 1422.CrossRefGoogle Scholar
Nakagawa, T., Kihara, K. and Harada, K. (2001) The crystal structure of low melanophlogite. American Mineralogist, 86, 15061512.CrossRefGoogle Scholar
Nakagawa, T., Kihara, K. and Fujiami, S. (2005) X-ray studies of structural changes in melanophlogite with varying temperature. Journal of Mineralogical and Petrological Sciences, 100, 247259.CrossRefGoogle Scholar
Nakano, S., Moritoki, M. and Ohgaki, K. (1999) High- Pressure phase equilibrium and Raman microprobe spectroscopic studies on the methane hydrate system. Journal of Chemical Engeneering Data, 44, 254257.CrossRefGoogle Scholar
Navrotsky, A., Hongwu, X., Moloy, E.C. and Welch, M.D. (2003) Thermochemistry of guest-free melanophlogite. American Mineralogist, 88, 16121614.CrossRefGoogle Scholar
Ohtani, T., Ohno, Y., Sasaki, S., Kume, T. and Shimizu, H. (2010) High-pressure Raman study of methane hydrate "filled ice". Journal of Physics: Conference Series, 215, 012058.Google Scholar
Shimizu, H., Kumazaki, T., Kume, T. and Sasaki, S. (2002) In situ observations of high-pressure phase transformations in a synthetic methane hydrate. Journal of Physical Chemistry B, 106, 3033.CrossRefGoogle Scholar
Sum, A.K., Burruss, R.C. and Dendy Sloan Jr, E. (1997) Measurement of clathrate hydrates via Raman spectroscopy. Journal of Physical Chemistry B, 101, 73717377.CrossRefGoogle Scholar
Sun, L., Zhao, Z., Ruoff, A.L., Zha, C. and Stupian, G. (2007) Raman studies on solid CH4 at room temperature to 208 GPa. Journal of Physics Condensed Matter, 19, 425206.CrossRefGoogle Scholar
Tribaudino, M., Artoni, A., Mavris, C., Bersani, D., Lottici, P.P. and Belletti, D. (2008) Single crystal X-ray and Raman investigation on melanophlogite from Varano Marchesi (Parma, Italy). American Mineralogist, 93, 8894.CrossRefGoogle Scholar
Tribaudino, M., Gatta, G.D. and Lee, Y. (2010) A highpressure cubic-to-tetragonal phase-transition in melanophlogite, a SiO2 clathrate phase. Microporous and Mesoporous Materials, 129, 267273.CrossRefGoogle Scholar
Tulk, C.A., Klug, D.D., dos Santos, A.M., Karotis, G., Guthrie, M., Molaison, J.J. and Pradhan, N. (2012). Cage occupancies in the high pressure structure H methane hydrate: a neutron diffraction study. Journal of Chemical Physics, 136, 054502.CrossRefGoogle ScholarPubMed
Van Koningsveld, H. and Gies, H. (2004) Similarities between the clathrasils DOHD.R. MEP and MTN. Zeitschrift für Kristallographie, 219, 637643.Google Scholar
Von Lasaulx, A. (1876) Mineralogisch-kristallographische Notizen. II. Melanophlogit, ein neues Mineral. Neues Jahrbook für Mineralogie, 1876, 250257.Google Scholar
Wu, Y.H., Sasaki, S. and Shimizu, H. (1995) Highpressure Raman study of dense methane: CH4 and CD4. Journal of Raman Spectroscopy, 26, 963967.CrossRefGoogle Scholar
Xu, H., Zhang, J. Zhao, Y., Guthrie, G.D., Hickmott, D.D. and Navrotsky, A. (2007) Compressibility and pressure-induced amorphization of guest-free melanophlogite: an in situ synchrotron X-ray diffraction study. American Mineralogist, 92, 166173.CrossRefGoogle Scholar
Yagi, T., Iida, E., Hirai, H. Miyajima, N., Kikegawa, T. and Bunno, M. (2007) High-pressure behavior of a SiO2 clathrate observed by using various pressure media. Physical Review B, 75, 174115174120.CrossRefGoogle Scholar
Za`k, L. (1972) A contribution to the crystal chemistry of melanophlogite. American Mineralogist, 57, 779796.Google Scholar