Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T04:08:17.934Z Has data issue: false hasContentIssue false

Gyrolite: Its Crystal Structure and Crystal Chemistry

Published online by Cambridge University Press:  05 July 2018

Stefano Merlino*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 56100 Pisa, Italy

Abstract

The crystal structure of gyrolite from Qarusait, Greenland, was solved and refined with the space group P and cell parameters a = 9.74(1), b = 9.74(1), c = 22.40(2)Å, α = 95.7(1)°, β = 91.5(1)°, γ = 120.0(1)°. The structure is built up by the stacking of the structural units already found in the crystal structure of reyerite (Merlino, 1972, 1988), namely tetrahedral sheets S1 and S2 and octahedral sheets O. The tetrahedral and octahedral sheets are connected by corner sharing to give rise to the complex layer which can be schematically described as 1OS2, where S2 and , as well as O and , are symmetry-related units. Successive complex layers with composition [Ca14Si23AlO60(OH)8]-5 are connected through an interlayer sheet made up by calcium and sodium cations and water molecules.

The unit cell content NaCa16Si23AlO60(OH)8·14H2O, determined by the structural study, was confirmed by a chemical analysis, apart from the indication of a somewhat larger water content. The crystal chemistry of gyrolite is discussed on the basis of the present structural results and the chemical data given in the literature for gyrolite from different localities: the crystal chemical formula which accounts for most gyrolite samples is Ca16Si24O60(OH)8·(14+x)H2O, with 0 ⩽ x ⩽ 3.

Stacking disorder, twinning and polytypic variants in gyrolite, as well as the structural relationships of gyrolite with truscottite, reyerite, fedorite and the synthetic phases K and Z are described and discussed.

Type
Mineralogy and Crystal Structures
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. (1851) Phil. Mag. Sec. IV, 1, 111Google Scholar
Assarsson, G.O. (1957) J. Phys. Chem. 61, 473CrossRefGoogle Scholar
Cann, J.R. (1965) Mineral. Mag. 35, 1Google Scholar
Chalmers, R.A., Farmer, V.C. Harker, R.I., Kelly, S., and Taylor, H. F. W. (1964) Ibid. 33, 821Google Scholar
Christie, W.A. K. (1925) Rec. Geol. Surv. India, 56, 199Google Scholar
Clarke, F.W. (1889) Am. J. Sci. 38, 128Google Scholar
Cromer, D.T., and Mann, J.B. (1968) Ada Crystallogr. A24, 321.CrossRefGoogle Scholar
Dornberger-Schiff, K. (1956) Ibid. 9, 593Google Scholar
Dornberger-Schiff, K. (1966) Lehrgang uber OD-Strukturen. Akademie Verlag, Berlin.Google Scholar
Eberhard, E., and Hamid Rahman, S. (1982) Ref. Diskussiontagung A.G.Kr., Z. Kristallogr. 159, 34Google Scholar
Flint, E.P. McMurdie, H.F., and Wells, L.S. (1938) J. Res. Nat. Bureau Standards, 21, 617CrossRefGoogle Scholar
Franzini, M., and Leoni, L. (1972) Atti Soc. Tosc. Sc. Nat. Serie A, 79, 7Google Scholar
Funk, H., and Thilo, E. (1955) Z. anorg. allg. Chem. 278, 237CrossRefGoogle Scholar
Garavelli, C.L., and Vurro, F. (1984) Rend. Soc. It. Min. Petr. 39, 695Google Scholar
Gard, J.A., Luke, K., and Taylor, H. F. W. (1981) Cem. Concr. Res. 11, 659CrossRefGoogle Scholar
Mitsuda, T. and Taylor, H. F. W. (1975) Mineral. Mag. 40, 325Google Scholar
Gottardi, G., and Passaglia, E. (1967) Per. Mineral. 36, 107-9Google Scholar
Harker, R.I. (1964) J. Am. Ceram. Soc. 47, 521Google Scholar
How, O. (1861) Edinb. N. Phil. J. 14, 117Google Scholar
Hussak, E. (1906) Zentralblattfiir Mineralogie 1906, 330Google Scholar
Istrate, G., and Anton, O. (1985) III Meeting Europ. Un. Geosc., Terra Cognita, 5, 328Google Scholar
Kohayashi, A., and Kawai, T. (1974) Geosci. Mag. 25, 367Google Scholar
Kudriashova, V.I. (1958) DokL Akad. Nauk. SSSR, 123, 538Google Scholar
Lachowski, E.E., Murray, L.W., and Taylor, H. F. W. (1979) Mineral. Mag. 43, 333CrossRefGoogle Scholar
Leoni, L., and Saitta, M. (1973) X-ray Spectrom. 3, 74Google Scholar
Mackay, A.L., and Taylor, H. F. W. (1953) Mineral. Mag. 30, 80Google Scholar
Merlino, S. (1972) Nature Phys. Sci. 238, 124CrossRefGoogle Scholar
Merlino, S. (1983) Am. Mineral. 68, 614Google Scholar
Merlino, S. (1988) Mineral. Mag. 52 (in press).CrossRefGoogle Scholar
Meyer, J.W., and Jaunarajs, J.L. (1961) Am. Mineral. 46, 913Google Scholar
Mizota, T. (1969) J. Jap. Assoc. Min. Petr. & Econ. Geol. 62, 329CrossRefGoogle Scholar
Schaller, W.T. (1905) U.S. Geol. Surv. 262, 124Google Scholar
Sokolova, G.V., Kashaev, A.A., Drits, V.A., and Ilyukhin, V.V. (1983) Soy. Phys. Crystallogr. 28(1), 195.Google Scholar
Strunz, H., and Micheelsen, H. (1958) Naturwiss. 45, 515Google Scholar
Sukheswala, R.N., Avasia, R.K., and Gangopadhyay, M. (1974). Mineral. Mag. 39, 658CrossRefGoogle Scholar
Sweet, J.M. (1961) Ibid. 32, 745Google Scholar
Taylor, H. F. W. (1962) Proc. 4th Int. Symp. Chem. Cement, Washington 1960, 1 167.Google Scholar
Taylor, H. F. W. (1964) In The Chemistry of Cements (Taylor, H. F. W., ed.) Vol. I, 204.Google Scholar