Skip to main content Accessibility help
×
Home

Geochemistry of pink corundum-bearing feldspathic gneiss, Frenchvale quarry, Cape Breton Island, Canada: metamorphism of albitised, Fe-poor clastic rocks

  • J. Victor Owen (a1), Jacob J. Hanley (a1), Mitchell J. Kerr (a1), Matthew Stimson (a1) and Brandon Boucher (a2)...

Abstract

Frenchvale quarry, once mined for dolomitic marble, contains pink corundum-bearing, quartz-free/-poor, feldspathic gneiss that is unusually sodic (~7% wt.% Na2O) and iron-poor (~0.6 wt.% Fe2O3), but has silica, alumina and immobile trace-element contents resembling those of suspended fluvial particulate matter (e.g. in the Congo River). The protolith of the gneiss, interpreted as a fine-grained clastic sediment deposited offshore, evidently was albitised prior to deformation and regional metamorphism. Variably-altered gneiss samples show a narrow range of δ18OVSMOW values (8.1 to 10.7‰) and no systematic differences in bulk O isotope composition as a function of alteration intensity. With the exception of an extensively fuchsitised zone adjacent to a thick (1.2 m), cross-cutting quartz vein that contains H2O–NaCl+CO2+CH4-bearing fluid inclusions, the O isotope data do not support interaction of the gneiss with an externally-derived fluid phase except at low fluid:rock ratio, even where granodiorite occurs in direct contact with the gneiss. Fluid inclusions in the quartz vein have bulk $X_{{\rm H}_2{\rm O}}$ , $X_{{\rm C}{\rm O}_{\rm 2}}$ and $X_{{\rm C}{\rm H}_{\rm 4}}$ values (in mol.%) of 99.60, 0.14 and 0.26, respectively, as determined by gas chromatography. Although the protolith of the gneiss was associated with carbonate platformal rocks (now marble), corundum is confined to the feldspathic rocks. These feldspathic rocks lack calc-silicate minerals; they are not skarns. As such, they are distinct from well-known Himalayan sapphire and ruby deposits cited previously as analogues of the Frenchvale corundum occurrence.

Copyright

Corresponding author

*Author for correspondence: J. Victor Owen, Email: victor.owen@smu.ca

Footnotes

Hide All

Associate Editor: Craig Storey

Footnotes

References

Hide All
Barr, S.M. (1990) Granitoid rocks and terrane characterization: An example from the northern Appalachian Orogen. Geological Journal, 25, 295304.
Barr, S.M., Kamo, S. and White, C.E. (1999) A late Neoproterozoic age for a tonalite dyke in the Boisdale Hills, Cape Breton Island, Nova Scotia. Atlantic Geology, 35, 197202.
Beeskow, B., Rankin, A.H., Murphy, P.J. and Treloar, P.J. (2005) Mixed CH4-CO2 fluid inclusions in quartz from the South Wales Coalfield as suitable natural calibration standards for microthermometry and Raman spectroscopy. Chemical Geology, 223, 315.
Bodnar, R.J. (2003) Introduction to fluid inclusions. Pp. 18 in: Fluid Inclusions: Analysis and Interpretation (Samson, I., Anderson, A. and Marshall, M., editors). Mineralogical Association of Canada, Short Course, 32.
Boulvais, P., Ruffet, G., Cornichet, J. and Mermet, M. (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées). Lithos, 93, 89106.
Bray, C.J. and Spooner, E.T.C. (1992) Fluid inclusion volatile analysis by gas chromatography with photoionization/micro-thermal conductivity detectors: Applications to magmatic MoS2 and other H20-CO2 and H20-CH4 fluids. Geochimica et Cosmochimica Acta, 56, 261272.
Burke, E.A. (2001) Raman microspectrometry of fluid inclusions: Lithos, 55, 139158.
Clayton, R.N. and Mayeda, T.K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 4352.
Dubessy, J., Poty, B., and Ramboz, C. (1989) Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions. European Journal of Mineralogy, 1, 517534.
Dunham, A.C. and Wilkinson, F.C.F. (1978) Accuracy, precision and detection limits of energy dispersive electron-microprobe analysis of silicates. X-Ray Spectrometry, 7, 5056.
Dupré, B., Gaillardet, J., Rousseau, D., and Allègre, C.J. (1996) Major and trace elements of river-borne material: The Congo Basin. Geochimica Cosmochimica Acta, 60, 13011321.
Dzikowski, T.J. (2004) A Comparative Study of the Origin of Carbonate-Hosted Gem Corundum Deposits in Canada. PhD Dissertation, University of British Columbia, Canada, 259 pp.
Fagan, A.J. and Groat, L.A. (2014) The geology of the Aappaluttoq ruby and pink sapphire deposit, SW Greenland. Geological Society of America Abstracts with Programs, 46(6). Vancouver, British Columbia, Canada, 19–22 October, 417.
Gaillardet, J., Dupré, C. and Allegre, C.J. (1995) A global mass budget applied to the Congo Basin Rivers: erosion rates and continental composition. Geochimica Cosmochimica Acta, 59, 34693485.
Giuliani, G., Fallick, A.E., Garnier, V., France-Lanord, C., Ohnenstetter, D. and Schwarz, D. (2005) Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology, 33, 249252.
Giuliani, G., Ohnenstetter, D., Fallick, A.E., Groat, L. and Fagan, A.J. (2014) The geology and genesis of gem corundum deposits. Pp. 29112 in: The Geology of Gem Deposits (Groat, L., editor). Mineralogical Association of Canada, vol. 2.
Goldstein, R.H. and Reynolds, T.J. (1994) Fluid inclusion microthermometry. Pp. 87122 in: Systematics of Fluid Inclusions in Diagenetic Minerals (Goldstein, R.H. and Reynolds, T.J., editors). Society for Sedimentary Geology, Short Course Volume, 31.
Grant, J.A. (2005) Isocon analysis: a brief review of the method and applications. Physics and Chemistry of the Earth, 30, 9971004.
Harlow, G.E. and Bender, W. (2013) A study of ruby (corundum) compositions from the Mogok belt, Myanmar: Searching for geochemical fingerprints. American Mineralogist, 98, 11201132.
Harnois, L. (1988) The CIW: a new chemical index of weathering. Sedimentary Geology, 55, 319322.
Henry, D.J., Guidotti, C.V. and Thomson, J.A. (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90, 316328.
Hopkins, R., van Rooyen, D., McFarlane, C. and Boucher, B. (2017) Rutile and zircon LA-ICP-MS U-Pb dating of a corundum-bearing skarn deposit, Frenchvale, Cape Breton Island. Atlantic Geoscience Society, Program with Abstracts. Fredericton, NB, Canada, p. 33.
Kerr, M.J., Hanley, J., Morrison, G., Everest, J. and Bray, C. (2015) Preliminary evolution of hydrocarbon speciation and abundance as an exploration tool for Footwall-style sulfide ores associated with the Sudbury Igneous Complex, Ontario, Canada. Economic Geology, 110, 531556.
King, M.S. and Barr, S.M. (2002) The Mira – Bras d'Or terrane boundary in Cape Breton Island, Nova Scotia: potential field and petrophysical investigations applied to tectonic analysis in the northern Appalachian orogeny. Atlantic Geology, 38, 89.
Levinson, A.A. and Cook, F.A. (1994) Gem corundum in alkali basalt: origin and occurrence. Gems & Gemology, Winter 1994, 253262.
McLelland, J., Morrison, J., Selleck, B., Cunningham, B., Olson, C., Schmidt, K. (2002) Hydrothermal alteration of late- to post-tectonic Lyon Mountain Granitic Gneiss, Adirondack Mountains, New York: Origin of quartz–sillimanite segregations, quartz – albite lithologies, and associated Kiruna-type low-Ti Fe-oxide deposits. Journal of Metamorphic Geology, 20, 175190.
Meinert, L.D. (1992) Skarns and skarn deposits. Geoscience Canada, 19, 145162.
Meinhold, G. (2010) Rutile and its applications in earth science. Earth Science Reviews, 102, 128.
Mossman, D.J., Duivenvoorden, J.D. and Isenor, F.M. (2007) Cape Breton ruby, a new Canadian gemstone discovery, Cape Breton Island, Nova Scotia. Journal of Gemmology, 30, 279286.
Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715717.
O'Donoghue, M. (1988) Gemstones. Chapman and Hall, London.
Okrusch, M., Bunch, T.E. and Bank, H. (1976) Paragenesis and petrogenesis of a corundum-bearing marble at Hunza (Kashmir). Mineralium Deposita, 11, 278297.
Owen, J.V. and Greenough, J.D. 1999. Scapolite pegmatite from the Minas fault, Nova Scotia: tangible manifestation of Carboniferous, evaporite-derived hydrothermal fluids in the western Cobequid highlands? Mineralogical Magazine, 63, 387397.
Owen, J.V., Longstaffe, F.J. and Greenough, J.D. (2003) Petrology of sapphirine granulite and associated sodic gneisses from the Indian Head Range, Newfoundland. Lithos, 68, 91114.
Parker, A. (1970) An index of weathering for silicate rocks. Geological Magazine, 107, 501504.
Palke, A.C. and Breeding, C.M. (2017) The origin of needle-like rutile inclusions in natural gem corundum: a combined EPMA, LA-ICP-MS, and nanoSIMS investigation. American Mineralogist, 102, 14511461.
Poulton, S.W. (1999) Surface area, iron oxide and organic carbon relationships in sediments. Pp. 279282 in: Geochemistry of the Earth's Surface (Armannsson, H., editor). Balkema, Rotterdam.
Pêcher, A., Guiliani, G., Garnier, V., Maluski, H., Kausar, A.B., Malik, R.H. and Muntaz, H.R. (2002) Geology, geochemistry and Ar-Ar geochronology of the Nangimali ruby deposit, Nanga Parbat Himalaya (Azad Kashmir, Pakistan). Journal of Asian Earth Sciences, 21, 265282.
Raeside, R.P. (1989) Geology of the metamorphic rocks of the Boisdale Hills, Cape Breton Island. Nova Scotia Department of Mines and Energy, Report, 89–3, 145148.
Raeside, R.P. and Barr, S.M. (1990) Geology and tectonic development of the Bras d'Or suspect terrane, Cape Breton Island, Nova Scotia. Canadian Journal of Earth Sciences, 27, 13711381.
Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy, 12. Mineralogical Society of America, Washington, DC, pp. 644.
Salvi, S. and Williams-Jones, A.E. (1997) Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 8399.
Spencer, R.G.M., Stubbins, A. and Gaillardet, J. (1999) Geochemistry of the Congo River, basin and plume. Pp.554583 in Biogeochemical Dynamics at Major River-Coastal Interfaces: Linkages with Global Change (Bianchi, T.S., Allison, M.A. and Cai, W.J., editors). Cambridge University Press, UK.
Sutherland, F.L., Hoskin, P.W.O., Fanning, C.M. and Coenraads, R.P. (1998) Models of corundum origin from alkali basaltic terrains: a reappraisal. Contributions to Mineralogy and Petrology, 133, 356372.
Taylor, S.R. and McClennan, S. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Palo Alto, CA.
White, C.E., Barr, S.J., Davis, D.W., Swanton, D.S., Ketchum, J.W.F. and Reynolds, P.H. (2016) Field relations, age, and tectonic setting of metamorphic and plutonic rocks in the Creignish Hills – North Mountain area, southwestern Cape Breton Island, Nova Scotia, Canada. Atlantic Geology, 52, 3759.
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.
Wopenka, B. and Pasteris, J.D. (1986) Limitations to quantitative analysis of fluid inclusions in geological samples by laser Raman microprobe spectroscopy: Applied Spectroscopy, 24, 144151.
Wopenka, B. and Pasteris, J.D. (1987) Raman intensities and detection limits of geochemically relevant gas mixtures for a laser Raman microprobe. Analytical Chemistry, 59, 21652170.
Yakymchuk, C. and Szilas, K. (2017) Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: Exploration vectors for ruby deposits within high-grade greenstone belts. Geoscience Frontiers, 9, 727749.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed