Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T09:41:18.576Z Has data issue: false hasContentIssue false

A geochemical study of two peraluminous granites from south-central Iberia: the Nisa-Albuquerque and Jalama batholiths

Published online by Cambridge University Press:  05 July 2018

J. A. Ramirez
Affiliation:
Lyongade 6, 2 tv, 2300 Copenhagen S, Denmark
L. G. Menendez
Affiliation:
Dept. de Mineralogía y Petrología, Campus Fuentenueva, 18002 Granada, Spain

Abstract

In this paper we present new petrological and geochemical data for two peraluminous granite batholiths (Nisa Alburquerque and Jalama batholiths) representative of the ‘Araya-type’ granites of the Central-Iberian Zone. Both granites are composite with several facies (monzogranites and leucogranites) that can be grouped into two main granite units: the external units and central units. Intrusive relationships and lack of geochemical coherence between the central and external units indicate that they are not comagmatic but represent different pulses. The central units of both batholiths are petrologically and geochemically different. On the other hand, external units show a lot of similarities and are the main object of this study. The main characteristics of the external granites can be interpreted in terms of an incomplete fractional crystallization process of early mineral phases (plg + Kf + bt) which probably took place at the level of emplacement. Other possible mechanisms of magmatic differentiation (magma mixing, restite unmixing, sequential melting) can be discarded based on field, petrography and geochemical data. We propose that the ‘Araya-type’ granites are formed by the intrusion of distinct magma pulses (central and external). Further evolution within each pulse can be due to incomplete fractional crystallization possibly taking place at the emplacement level.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arth, J.G. (1976) Behaviour of trace elements during magmatic processes - a summary of theorical models and their applications. J. Res. U.S. Geol. Surv. 4, 41–7.Google Scholar
Bea, F. (1993) Aluminosity dependent fractionation patterns in differentiated granite-leucogranite systems. EOS (Trans. Amer. Geophys. Union) April 20, p. 343 (abstract).Google Scholar
Bea, F. (1996) Residence of REE, Y Th and U within granite rocks. Implications for the chemistry of crustal melts. J. Petrol., 37, 521–5.Google Scholar
Bea, F., Sanchez González de Herrero, J.G. and Serrano Pinto, M. (1987) Una compilación geoquímica (elementos mayores) para los granitoides del macizo Hespérico. In Geologia de los granitoides y rocas asociadas del macizo Hespérico. (Bea, F. et al. , eds). Ed. Rueda, 87193.Google Scholar
Bea, F., Pereira, M.D., Corretgé, L.G. and Fershtater, G.B. (1994a) Differentiation of strongly peraluminous, perphosphorous granites: The Pedrobernardo pluton, central Spain. Geochim. Cosmochim. Acta, 58, 2069–27.CrossRefGoogle Scholar
Bea, F., Pereira, M.D. and Stroh, A. (1994b) Mineral/leucosome trace element partitioning in a peraluminous migmatite (a laser ablation ICP-MS study). Chem. Geol., 117, 291312.CrossRefGoogle Scholar
Benard, F., Moutou, P. and Pichavant, M. (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magma. J. Geol., 93, 271–91.CrossRefGoogle Scholar
Chappell, B.W., White, A.J.R. and Wyborn, D. (1987) The importance of residual material (restite) in granite petrogenesis. J. Petrol., 28, 1111–38.CrossRefGoogle Scholar
Clarke, D.B. (1992) Granitoid Rocks. Chapman-Hall, 283 pp.Google Scholar
Clemens, J.D. and Vielzeuf, D. (1987) Constraints on melting and magma production in the crust. Earth Planet. Sci. Lett., 86, 287306.CrossRefGoogle Scholar
Corretgé, L.G. (1983) Las rocas graníticas y granitoides del Macizo Hespérico. En: Libro Jubilar J.M. Ríos, Geología de España I, 569–92. I.G.M.E.Google Scholar
Corretgé, L.G., Bea, F. and Suárez, O. (1985) Las características geoquímicas del batolito de Cabeza de Araya (Cáceres, España): implicaciones petrogenéticas. Trab. Geol. Univ. Oviedo, 15, 219–38.Google Scholar
Deniel, C., Vidal, P., Fernández, A. et al. (1987) Isotopic study of the Manaslu granite (Himalaya, Nepal); inferences on the age and source of the Himalayan leucogranites. Contrib. Mineral. Petrol., 96, 7892.CrossRefGoogle Scholar
Díez Balda, M.A. (1986) El Complejo Esquisto- Grauvá quico, las Series Paleozoicas y la Estructura Hercínica al Sur de Salamanca. Universidad de Salamanca.Google Scholar
Díez Balda, M.A., Martínez Catalán, J.R. and Ayarza Arribas, P. (1995) Syn-collisional extensional collapse parallel to the orogenic trend in a domain of steep tectonics: the Salamanca Detachment Zone (Central Iberian Zone, Spain). J. Struct. Geol., 17, 163–82.CrossRefGoogle Scholar
Hanson, G.N. (1989) An approach to trace element modelling using a simple igneous system as an example. Geochemistry and Mineralogy of REE. Reviews in Mineralogy, 21, 79–97.Google Scholar
Holtz, F. (1989) Importance of melt fraction and and crustal rock composition in crustal genesis - the example of two granitic suites of Northern Portugal. Lithos, 24, 2135.CrossRefGoogle Scholar
Julivert, M., Fontbote, J.M., Ribeiro, A. and Conde, L. (1974) Mapa Tectónico de la Península Ibérica y Baleares. Escala 1: 1 000 000. IGME, pp. 1–101.Google Scholar
Le Maitre, R.W. (1982) Numerical Petrology. Elsevier. Amsterdam, 281pp.Google Scholar
López Plaza, M. and Martínez Catalán, J.R. (1987) Síntesis estructural de los granitoides del Macizo Ibérico. In Geología de los Granitoides del Macizo Hespérico (Bea, F. et al., eds.). 195210.Google Scholar
Maaløe, S. and Wyllie, P.J. (1975) Water content of a granitic magma deduced from the sequence of crystallization determined experimentally with water undersaturated conditions. Contrib. Mineral. Petrol., 52, 175–91.CrossRefGoogle Scholar
Mahood, G.A., Nibler, G.E. and Halliday, A.N. (1996) Zoning patterns and petrologic processes in per-aluminous magma chambers: Hall Canyon Pluton, Panamint Mountains, California. GSA Bull., 108, 437–53.2.3.CO;2>CrossRefGoogle Scholar
Martínez Catalán, J.R. (1990) A non-cylindrical model for the northwest Iberian allochthonous terranes and their equivalents in the Hercynian belt of Western Europe. Tectonophysics, 179, 253–72.CrossRefGoogle Scholar
McCarthy, T.S. and Hasty, R.A. (1976) Trace element distribution patterns and their relationship to the crystallization of granitic melts. Geochim. Cosmochim. Acta, 40, 1351–8.CrossRefGoogle Scholar
Miller, C.F. (1985) Are peraluminous magmas derived form pelitic sedimentary sources?. J. Geol., 93, 673–89.CrossRefGoogle Scholar
Mittlefehldt, D. and Miller, C.F. (1983) Geochemistry of the Sweetwater Wash Pluton, California: Implications for anomalous trace element behaviour during differentiation of felsic magmas. Geochim. Cosmochim. Acta, 47, 109–24.CrossRefGoogle Scholar
Montel, J.M. and Vielzeuf, D. (1997) Partial melting of metagreywackes part II. Compositions of minerals and melts. Contrib. Mineral. Petrol., 128, 176–96.CrossRefGoogle Scholar
Nancy, M.T. (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Amer. J. Sci., 283, 9931033.Google Scholar
Nash, W.P. and Crecraft, H. R. (1985) Partition coefficients for trace element in silicic magmas. Geochim. Cosmochim. Acta., 49, 2309–22.CrossRefGoogle Scholar
Patiño Douce, A.E. and Johnston, A.D. (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol., 107, 202–18.CrossRefGoogle Scholar
Ramirez, J.A. (1996) Estudio petrológico, geoquímico e isotó pico del batolito de Jálama (N. de Extremadura). PhD thesis. Univ. de Granada, Spain.Google Scholar
Ribeiro, A. (1974) Contribution á l'etude tectonique de Tras-os-Montes Oriental. Mem. Serv. Geol. Port., 24, 1168.Google Scholar
Rodríguez Alonso, M.D., (1985) El complejo esquisto grauváquico y el Paleozoico en el centro-oeste español. Universidad de Salamanca. 174 pp.Google Scholar
Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman. 352 pp.Google Scholar
Scaillet, B., France-Lanord, C. and Le Fort, P. (1990) Badrinath-Gangotri plutons (Garwahl, India): petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite. J. Volcanol. Geotherm. Res., 44, 163–8.CrossRefGoogle Scholar
Scaillet, B., Pichavant, M. and Roux, J. (1995) Experimental crystallization of leucogranite mag-mas. J. Petrol., 36, 663705.CrossRefGoogle Scholar
Serrano Pinto, M., Casquet, C., Ibarrola, E., Corretgé, L.G. and Portugal Ferreira, M. (1987) Sintese geocronologica dos granitos do maciço hesperico. In Geología de los Granitoides del Macizo Hespérico. (Bea, F. et al., eds). Madrid Rueda, 6986.Google Scholar
Shearer, C.K., Papike, J.J. and Laul, J.C. (1987) Mineralogical and chemical evolution of a rare-element granite-pegmatite system: Harney Peak Granite, Black Hills, South Dakota. Geochim. Cosmochim. Acta, 51, 473–86.CrossRefGoogle Scholar
Rodríguez, Suárez (1985) Petrografía, blastesis y deformación en la aureola de contacto del plutón de Nisa Alburquerque. Tesis de licenciatura. Univ. Oviedo.Google Scholar
Vigneresse, J.L. and Bouchez, J.L. (1997) Successive granitic magma batches during pluton emplacemente: the case of Cabeza de Araya (Spain). J. Petrol., 38, 1767–76.CrossRefGoogle Scholar
Wall, V.J., Clemens, J.D. and Clarke, D.B. (1987) Models for granitoid evolution and source composition. J. Geol., 95, 731–49.CrossRefGoogle Scholar
Wilkinson, L. (1989) SYSTAT: The system for statistics. Evanson, IL, 638p.Google Scholar
Williamson, B.J., Shaw, A., Downes, H. and Thirlwall, M.F. (1996) Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chem. Geol., 127, 2542.CrossRefGoogle Scholar
Zen, E. (1988) Phase relations of peraluminous granitic rocks and their petrogenetic implications. Ann. Rev. Earth Planet. Sci., 16, 2151.CrossRefGoogle Scholar