Skip to main content Accessibility help

Fluorarrojadite-(BaNa), BaNa4CaFe13Al(PO4)11(PO3OH)F2, a new member of the arrojadite group from Gemerská Poloma, Slovakia

  • Martin Števko (a1), Jiří Sejkora (a1), Pavel Uher (a2), Fernando Cámara (a3), Radek Škoda (a4) and Tomáš Vaculovič (a5)...


The new mineral fluorarrojadite-(BaNa), ideally BaNa4CaFe13Al(PO4)11(PO3OH)F2 was found on the dump of Elisabeth adit near Gemerská Poloma, Slovakia. It occurs in hydrothermal quartz veins intersecting highly fractionated, topaz–zinnwaldite S-type leucogranite. Fluorarrojadite-(BaNa) is associated with fluorapatite, ‘fluordickinsonite-(BaNa)’, triplite, viitaniemiite and minor amounts of other minerals. It forms fine-grained irregular aggregates up to 4 cm x 2 cm, which consist of individual anhedral grains up to 0.01 mm in size. It has a yellowish-brown to greenish-yellow colour, very pale yellow streak and a vitreous to greasy lustre. Mohs hardness is ~4½ to 5. The fracture is irregular and the tenacity is brittle. The measured density is 3.61(2) g cm–3 and calculated density is 3.650 g cm–3. Fluorarrojadite-(BaNa) is biaxial (+) and nonpleochroic. The calculated refractive index based on empirical formula is 1.674. The empirical formula (based on 47 O and 3 (OH + F) apfu) is A1(Ba0.65K0.35)Σ1.00 A2Na0.35 B1(Na0.54Fe0.46)Σ1.00 B2Na0.54Ca(Ca0.74Sr0.20Pb0.02Ba0.04)Σ1.00Na2 Na3Na0.46 M(Fe7.16Mn5.17Li0.37Mg0.12Sc0.08Zn0.06Ga0.02Ti0.02)Σ13.00 Al1.02P11O44PO3.46(OH)0.54 W(F1.54OH0.46). Fluorarrojadite-(BaNa) is monoclinic, space group Cc, a = 16.563(1) Å, b = 10.0476(6) Å, c = 24.669(1) Å, β = 105.452(4)°, V = 3957.5(4) Å3 and Z = 4. The seven strongest reflections in the powder X-ray diffraction pattern are [dobs in Å, (I), hkl]: 3.412, (21), 116; 3.224, (37), 206; 3.040, (100), 42 $\bar 4$ ; 2.8499, (22), 33 $\bar 3$ ; 2.7135, (56), 226; 2.5563, (33), 028 and 424; 2.5117, (23), 040. The new mineral is named according to the nomenclature scheme of arrojadite-group minerals, approved by the IMA CNMNC. In fluorarrojadite-(BaNa), Fe2+ is a dominant cation at the M site (so the root-name is arrojadite) and two suffixes are added to the root-name according to the dominant cation of the dominant valence state at the A1 (Ba2+) and B1 sites (Na+). A prefix fluor is added to the root-name as F is dominant over (OH) at the W site.


Corresponding author


Hide All

Associate Editor: G. Diego Gatta



Hide All
Bajaník, Š., Ivanička, J., Mello, J., Pristaš, J., Reichwalder, P., Snopko, L., Vozár, J. and Vozárová, A. (1984) Geological map of the Slovenské Rudohorie Mts. – Eastern part 1: 50 000. Dionýz Štúr Institute of Geology, Bratislava.
Breiter, K., Broska, I. and Uher, P. (2015) Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia). Geologica Carpathica, 66, 1936.
Burnham, C.W. (1962) Lattice constant refinement. Carnegie Institute Washington Yearbook, 61, 132135.
Cámara, F., Oberti, R., Chopin, C. and Medenbach, O. (2006) The arrojadite enigma: I. A new formula and a new model for the arrojadite structure. American Mineralogist, 91, 12491259.
Cámara, F., Bittarello, E., Ciriotti, M.E., Nestola, F., Radica, F. and Bracco, R. (2015) Fluorcarmoite-(BaNa), IMA 2015-062. CNMNC Newsletter No. 27, October 2015, 1229. Mineralogical Magazine, 79, 12291236.
Chopin, C., Oberti, R. and Cámara, F. (2006) The arrojadite enigma: II. Compositional space, new members, and nomenclature of the group. American Mineralogist, 91, 12601270.
Della Ventura, G., Bellatreccia, F., Radica, F., Chopin, C. and Oberti, R. (2014) The arrojadite enigma III. The incorporation of volatiles: a polarised FTIR spectroscopy study. European Journal of Mineralogy, 26, 679688.
Demartin, F., Gramaccioli, C.M., Pilati, T. and Sciesa, E. (1996) Sigismundite, (Ba,K,Pb)Na3(Ca,Sr)(Fe,Mg,Mn)14Al(OH)2(PO4)12, a new Ba-rich member of the arrojadite group from Spluga Valley, Italy. Canadian Mineralogist, 34, 827834.
Dianiška, I., Breiter, K., Broska, I., Kubiš, M. and Malachovský, P. (2002) First phosphorous-rich Nb-Ta-Sn-specialised granite from the Carpathians – Dlhá dolina valley granite pluton, Gemeric superunit. Geologica Carpathica, 53, Special Issue (CD-ROM).
Dianiška, I., Uher, P., Hurai, V., Huraiová, M., Frank, W., Konečný, P. and Kráľ, J. (2007) Mineralization of rare-metal granites. Pp. 254330 in: Sources of Fluids and Origin of Mineralizations in the Gemeric Unit (Hurai, V., editor). Open file report, Dionýz Štúr Institute of Geology, Bratislava [in Slovak].
Frost, R.L., Xi, Y., Schol, R. and Campos Horta, L.F. (2013) The phosphate mineral arrojadite-(KFe) and its spectroscopic characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 109, 138145.
Kilík, J. (1997) Geological characteristic of the talc deposit in Gemerská Poloma-Dlhá dolina. Acta Montanistica Slovaca, 2, 7180 [in Slovak].
Kohút, M. and Stein, H. (2005) Re-Os molybdenite dating of granite-related Sn-W-Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia. Mineralogy and Petrology, 85, 117129.
Kubiš, M. and Broska, I. (2005) The role of boron and fluorine in evolved granitic rock systems (on the example of the Hnilec area, Western Carpathians). Geologica Carpathica, 56, 193204.
Kubiš, M. and Broska, I. (2010) The granite system near Betliar village (Gemeric Superunit, Western Carpathians): evolution of a composite silicic reservoir. Journal of Geosciences, 55, 131148.
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The power of databases: the RRUFF project. Pp. 130 in: Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M., editors). De Gruyter, Berlin.
Larson, A.C. and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748.
Moore, P.B. and Ito, J. (1979) Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Mineralogical Magazine, 43, 227235.
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. J. Wiley and Sons, New York.
Ondruš, P. (1993) A computer program for analysis of X-ray powder diffraction patterns. Materials Sci. Forum, EPDIC-2, Enchede, 133–136, 297300.
Petrasová, K., Faryad, S.W., Jeřábek, P. and Žáčková, E. (2007) Origin and metamorphic evolution of magnesite-talc and adjacent rocks near Gemerská Poloma, Slovak Republic. Journal of Geosciences, 52, 125132.
Petrík, I. and Kohút, M. (1997) The evolution of granitoid magmatism during the Hercynian orogen in the Western Carpathians. Pp. 235252 in: Geological Evolution of the Western Carpathians (Grecula, P., Hovorka, D. and Putiš, M., editors). Mineralia Slovaca Monograph, Bratislava.
Petrík, I., Čík, Š., Miglierini, M., Vaculovič, T., Dianiška, I. and Ozdín, D. (2014) Alpine oxidation of lithium micas in Permian S-type granites (Gemeric unit, Western Carpathians, Slovakia). Mineralogical Magazine, 78, 507533.
Poller, U., Uher, P., Broska, I., Plašienka, D. and Janák, M. (2002) First Permian - Early Triassic zircon ages for tin-bearing granites from the Gemeric Unit (Western Carpathians, Slovakia): connection to the post-collisional extension of theVariscan orogen and S-type granite magmatism. Terra Nova, 14, 4148.
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3 l75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.
Rao, C., Wang, R.C., Hatert, F. and Baijot, M. (2014) Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26, 179188.
Števko, M., Uher, P., Sejkora, J., Malíková, R., Škoda, R. and Vaculovič, T. (2015) Phosphate minerals from the hydrothermal quartz veins in specialized S-type granites, Gemerská Poloma (Western Carpathians, Slovakia). Journal of Geosciences, 60, 237249.
Števko, M., Sejkora, J., Uher, P. and Cámara, F. (2016) Fluorarrojadite-(BaNa), IMA 2016-075. CNMNC Newsletter No. 34, December 2016, page 1318; Mineralogical Magazine, 80, 13151321.
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical Structural Mineral Classification System. 9th edition. Verlagsbuchhandlung, E. Scheizerbarťsche (Nägele u. Obermiller), Stuttgart, 870 pp.
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.
Uher, P. and Broska, I. (1996) Post-orogenic Permian granitic rocks in the Western Carpathian–Pannonian area: geochemistry, mineralogy and evolution. Geologica Carpathica, 47, 311321.
Vignola, P., Hatert, F., Baijot, M., Dal Bo, F., Andò, S., Bersani, D., Risplendente, A. and Vanini, F. (2015) Arrojadite-(BaNa), IMA 2014-071. CNMNC Newsletter No. 23, February 2015, page 55; Mineralogical Magazine, 79, 5158.
von Knorring, O. (1969) A note on the phosphate mineralisation at the Buranga pegmatite, Rwanda. Bulletin du Service géologique du Rwanda, 5, 4245.


Fluorarrojadite-(BaNa), BaNa4CaFe13Al(PO4)11(PO3OH)F2, a new member of the arrojadite group from Gemerská Poloma, Slovakia

  • Martin Števko (a1), Jiří Sejkora (a1), Pavel Uher (a2), Fernando Cámara (a3), Radek Škoda (a4) and Tomáš Vaculovič (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed