Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T23:57:14.923Z Has data issue: false hasContentIssue false

EXAFS and Mössbauer spectroscopic study of Febearing tetrahedrites

Published online by Cambridge University Press:  05 July 2018

J. M. Charnock
Affiliation:
Department of Chemistry, The University, Manchester M13 9PL
C. D. Garner
Affiliation:
Department of Chemistry, The University, Manchester M13 9PL
R. A. D. Pattrick
Affiliation:
Department of Geology, The University, Manchester M13 9PL
D. J. Vaughan
Affiliation:
Department of Geology, The University, Manchester M13 9PL

Abstract

EXAFS and Mössbauer data on synthetic silver-rich tetrahedrite, (Cu, Ag)10+xFe2−xSb4S13, reveal the presence of Fe2+ and Fe3+ the former occupying trigonal planar sites and the latter tetrahedral sites. There is also a clear relationship between increased silver substitution and an increase in Fe2+. The amount of Fe3+ incorporated in the synthetic tetrahedrites is proportional to the excess of Cu+ (Cu + Ag > 10 atoms) in the mineral, thus maintaining a charge balance. The iron in the natural tetrahedrites and the tennantite examined is mainly tetrahedrally co-ordinated Fe2+.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, I. L. A. (1986) Unpubl. Ph.D Thesis, University of Manchester.Google Scholar
Amthauer, G. and Bente, K. (1983) Naturwiss. 70, 146-7.CrossRefGoogle Scholar
Bancroft, G. M., Maddock, A. G., Ong, W. K., Prince, R. H. and Stone, A. J. (1967) J. Chem. Soc. (A), 1966-71.Google Scholar
Charlat, M. and Levy, C. (1974) Bull. Soc. fr. Mineral. Crystallogr. 97, 241-50.Google Scholar
Charnock, J. M., Garner, C. D., Pattrick, R. A. D. and Vaughan, D. J. (1988) Phys. Chem. Minerals 15, 296-99.CrossRefGoogle Scholar
Hall, A. J., Cervelle, B. and Levy, C. (1974) Bull. Soc. fr. Mineral. Crystallogr. 97, 18-26.Google Scholar
Gurman, S. J., Binstead, N. and Ross, I. (1984) J. Phys. C17, 143-51.Google Scholar
Imai, N. and Lee, H. (1980) Complex Sulphide Ores (Jones, M. J., ed.). Inst. Mining and Metallurgy, London, 248-59.Google Scholar
Johnson, M. L. and Burnham, C. W. (1985) Am. Mineral. 70, 165-70.Google Scholar
Johnson, N. E., Craig, J. R. and Rimstidt, J. D. (1986) Can. Mineral. 24, 385-97.Google Scholar
Kalbskopf, R. A. (1972) Tschermaks Mineral. Pert. Mitt. 18, 147-55.CrossRefGoogle Scholar
Lee, P. A. and Pendry, J. B. (1975) Phys. Rev. B11, 2795-811.CrossRefGoogle Scholar
Pattrick, R. A. D. and Hall, A. J. (1983) Mineral. Mag. 47, 441-51.CrossRefGoogle Scholar
Pauling, L. and Neuman, E. W. (1934) Z. Kristallogr. 88, 54-452.Google Scholar
Petersen, R. C. and Miller, I. (1986) Mineral. Mag. 50, 717-21.CrossRefGoogle Scholar
Riley, J. R. (1974) Mineral Deposita 9, 117-24.CrossRefGoogle Scholar
Shannon, R. D. (1981) Structure and Bonding in Crystals (O'Keeffe, M. and Navrotsky, A., eds.) Academic Press, 5370.CrossRefGoogle Scholar
Sugaki, A., Shima, H. and Kitakaze, A. (1975) Prof. T. Takeuchi Memorial Volume, pp. 6372.Google Scholar
Tatsuka, K. and Morimoto, N. (1977) Am. Mineral. 58, 425-34.Google Scholar
Vaughan, D. J. and Burns, R. G. (1972) 24th Int. Geol. Congr. 14, 158-67.Google Scholar
Vaughan, D. J. and Burns, R. G. and Craig, J. R. (1978) Mineral Chemistry of Metal Sulphides. Cambridge University Press, Cambridge.Google Scholar
Wuensch, B. J. (1964) Z. Kristallogr. 119, 437-53.CrossRefGoogle Scholar
Wuensch, B. J., Takeuchi, Y. and Nowacki, W. (1966) Ibid. 123, 1-20.Google Scholar