Skip to main content Accessibility help
×
Home

Essential features of the polytypic charoite-96 structure compared to charoite-90

  • I. V. Rozhdestvenskaya (a1) (a2), E. Mugnaioli (a3), M. Czank (a2), W. Depmeier (a2), U. Kolb (a3) and S. Merlino (a4)...

Abstract

Charoite, ideally (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4·nH20, is a rock-forming mineral from the Murun massif in Yakutia, Sakha Republic, Siberia, Russia, where it occurs in a unique alkaline intrusion. Charoite occurs as four different polytypes, which are commonly intergrown in nanocrystallme fibres. We report the structure of charoite-96 (a = 32.11(6), b = 19.77(4), c = 7.23(1) Å, β = 95.85(9)°, V = 4565(24) Å3, space group P21/m), which was solved ab initio by direct methods on the basis of 2676 unique electron diffraction reflections collected by automated diffraction tomography and refined to R1/wR2 = 0.34/0.37. The structure of charoite-96 is related to that of the charoite-90, which was also solved recently. Both structures are composed of three different types of dreier silicate chains running along [001] and separated by ribbons of edge-sharing Ca- and Na-centred octahedra. In the structure of charoite-96, adjacent blocks formed by three different silicate chains and stacked along the x axis, are shifted by a translation of 1/2 c. The shifts involve a hybrid dreier quadruple chain, [Si17O43]18– and a double dreier chain, [Si6O17]10–. In charoite-90 adjacent blocks are stacked without shifts.

Copyright

Corresponding author

References

Hide All
Akselrud, L.G., Grin, Yu.N., Zavalii, P.Yu., Pecharsky, V.K. and Fundamensky, V.S. (1989) CSD – the programs for determination and refinement of crystal structures. Collected Abstracts of the XII European Crystallography Meeting, Moscow, 3, 155.
Bailey, S.W. (1977) Report of the I.M.A. – I.U.Cr. Joint Committee on Nomenclature. American Mineralogist, 62, 411–415.
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Diligi, S. and Spagna, R. (2007) IL MILIONE: a suite of computer programs for crystal structure solution of proteins. Journal of Applied Crystallography, 40, 609–613.
Chiragov, M.I. and Shirinova, A.F. (2004) Crystal structure of charoite; relations to structures of miserite, canasite and okenite. Mineralogicheskiy Zhurnal, 26, 5–9. [in Russian].
Czank, M. and Bissert, G. (1993) The crystal structure of Li2Mg2[Si4O11], a loop-branched dreier single chain silicate. Zeitschrift für Kristallographie, 204, 129–142.
Czank, M. and Liebau, F. (1980) Periodicity faults in chain silicates: a new type of planar lattice fault observed with high resolution electron microscopy. Physics and Chemistry of Minerals, 6, 85–93.
Dornberger-Schiff, K. (1956) On order–disorder structures (OD-structures). Acta Crystallographica, 9, 593–601.
Dornberger-Schiff, K. (1964) Grundzüge einer Theorie der OD-Strukturen aus Schichten. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Chemie,Geologie und Biologie, 3, 1–107.
Dornberger-Schiff, K. (1966) Lehrgang über OD Strukturen. Akademie Verlag, Berlin, 135 pp.
Ferraris, G., Makovicky, E. and Merlino, S. (2004) Crystallography of Modular Materials. Oxford University Press, Oxford, UK, 370 pp.
Hejny, C. and Armbruster, T. (2001) Polytypism in xonotlite Ca6Si6O17(OH)2 . Zeitschrift für Kristallographie, 216, 396–408.
Jefferson, D.A. and Bown, M.G. (1973) Polytypism and stacking disorder in wollastonite. Nature Physical Science, 245, 43–44.
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. and Hubert, D. (2007) Towards automated diffraction tomography: part I – data acquisition. Ultramicroscopy, 107, 507–513.
Kolb, U., Gorelik, T. and Otten, M.T. (2008) Towards automated diffraction tomography. Part II – cell parameter determination. Ultramicroscopy, 108, 763–772.
Kudoh, Y. and Takeuchi, Y. (1979) Polytypism of xonotlite: (I) structure of an A1 polytype. Mineralogical Journal, 9, 349–373.
Liebau, F. (1985) Structural Chemistry of Silicates. Springer-Verlag, Berlin, 412 pp.
Merlino, S. (1983) Okenite, Ca10Si18O46·18(H2O); the first example of a chain and sheet silicate. American Mineralogist, 68, 614–622.
Merlino, S. (1997) OD approach in minerals: examples and applications. Pp. 29–54 in: Modular Aspects of Minerals (Merlino, S., editor). EMU Notes in Mineralogy 1, Eötvös University Press, Budapest, 488 pp.
Mugnaioli, E., Gorelik, T. and Kolb, U. (2009) “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy, 109, 758.
Mugnaioli, E., Gorelik, T., Stewart, A. and Kolb, U. (2011) “Ab-initio” structure solution of nanocrystalline minerals and synthetic materials by automated electron tomography. In: Minerals as Advanced Materials II (Krivovichev, S.V., editor). Springer-Verlag, Berlin, 427 pp.
Nikishova, L.V., Lazebnik, K.A. and Lazebnik, Yu.D. (1985) About crystallochemical formulae of charoite. Pp. 100–105 in: Crystal Chemistry and Structure of Minerals. Nauka, Leningrad, Russia, [in Russian].
Rozhdestvenskaya, I.V. and Nikishova, L.V. (2002) Crystallochemical characteristics of alkali calcium silicates from charoitites. Crystallography Reports, 47, 545–554.
Rozhdestvenskaya, I.V., Kogure, T. and Drits, V.A. (2009) Structural model of charoite. Mineralogical Magazine, 73, 883–890.
Rozhdestvenskaya, I.[V.], Mugnaioli, E., Czank, M., Depmeier, W., Kolb, U., Reinholdt, A. and Weirich, T. (2010) The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)] (OH,F)4.0·nH2O, solved by conventional and automated electron diffraction. Mineralogical Magazine, 74, 159–177.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 122–.
Schömer, R., Heil, U., Schlitt, S. and Kolb, U. (2009) ADT-3D. A software package for ADT data visualizing and processing. Institute of Computer Science, Johannes Gutenberg University, Mainz, Germany.
Veblen, D.R. (1985) Direct TEM imaging of complex structures and defects in silicates. Annual Review of Earth and Planetary Sciences, 13, 119–146.
Vincent, R. and Midgley, P.A. (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271–282.
Wenk, H.R., Muller, W.F., Liddell, N.A. and Phakey, P.P. (1976) Polytypism in wollastonite. Pp. 324–331 in: Electron Microscopy in Mineralogy (Wenk, H.R., editor). Springer-Verlag, Berlin, 564 pp.

Keywords

Essential features of the polytypic charoite-96 structure compared to charoite-90

  • I. V. Rozhdestvenskaya (a1) (a2), E. Mugnaioli (a3), M. Czank (a2), W. Depmeier (a2), U. Kolb (a3) and S. Merlino (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed