Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T13:09:55.472Z Has data issue: false hasContentIssue false

The entropy of zinc chromite (ZnCr2O4)

Published online by Cambridge University Press:  05 July 2018

S. Klemme*
Affiliation:
Mineralogisches Institut, Universität Heidelberg, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany
J. C. van Miltenburg
Affiliation:
Thermodynamic Centre, Utrecht University, Padualaan 8 3584 CH, Utrecht, The Netherlands

Abstract

The low-temperature heat capacity of zinc chromite (ZnCr2O4) was measured between 6.5 K and 400 K using adiabatic calorimetry, and some thermochemical functions (CP(T), S(T), S°298, H(T)-H(0)) were derived from the results. The standard entropy (S°298 = 128.6±0.3 J mol-1 K-1) for zinc chromite was calculated from the results. Our calorimetric measurements indicate one extremely large anomaly in the heat capacity curve at ∼12.3 K which is related to the cubic-tetragonal transition in ZnCr2O4.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayhan, M., Hashemi, T. and Brinkman, A.W. (1997) Sintering and humidity-sensitive behaviour of the ZnCr2O4-K2CrO4 ceramic system. Journal of Materials Science, 32, 66196623.CrossRefGoogle Scholar
Beretta, A., Sun, Q., Herman, R.G. and Klier, K. (1996) Production of methanol and isobutyl alcohol mixtures over double-bed cesium-promoted Cu/ZnO/Cr2O3 and ZnO/Cr2O3 catalysts. Industrial & Engineering Chemistry Research, 35, 15341542.CrossRefGoogle Scholar
Bramwell, S.T. and Gingras, M.J.P. (2001) Spin ice state in frustrated pyrochlore materials. Science, 294, 14951501.CrossRefGoogle Scholar
Dietvorst, E.J.L. (1980) Biotite breakdown and the formation of gahnite in metapeliticr ocks from Kemio, southwest Finland. Contributions to Mineralogy and Petrology, 75, 327337.CrossRefGoogle Scholar
Ehrenberg, H., Knapp, M., Baehtz, C. and Klemme, S. (2002) Tetragonal low-temperature phase of MgCr2O4. Powder Diffraction, 17, 230233.CrossRefGoogle Scholar
El-Sharkawy, E.A. (1998) Textural, structural and catalytic properties of ZnCr2O4-Al2O3 ternary solid catalysts. Adsorption Science & Technology, 16, 193216.CrossRefGoogle Scholar
Epling, W.S., Hoflund, G.B. and Minahan, D.M. (1998) Reaction and surface characterization study of higher alcohol synthesis catalysts – VII. Cs- and Pdpromoted 1: 1 Zn/Cr spinel. Journal of Catalysis, 175, 175184.Google Scholar
Gabr, R.M., Girgis, M.M. and Elawad, A.M. (1992) Formation, conductivity and activity of zinc chromite catalyst. Materials Chemistry and Physics, 30, 169177.CrossRefGoogle Scholar
Golonka, L.J., Licznerski, B.W., Nitsch, K. and Teterycz, H. (1997) Thick-film humidity sensors. Measurement Science & Technology, 8, 9298.CrossRefGoogle Scholar
Irvine, T.N. (1965) Chromian spinel as a petrogenetic indicator I. Theory. Canadian Journal of Earth Sciences, 2, 648672.CrossRefGoogle Scholar
Irvine, T.N. (1967) Chromian spinel as a petrogenetic indicator II. Petrologic applications. Canadian Journal of Earth Sciences, 4, 71103.CrossRefGoogle Scholar
Jacob, K.T. (1976) Gibbs free energies of formation of ZnAl2O4 and ZnCr2O4 . Thermochimica Acta, 15, 7987.CrossRefGoogle Scholar
Juve, G. (1967) Zincand lead deposits in the Håfjell syncline Ofoten, northern Norway. Norges Geologiske Undersøgelse, 244, 5567.Google Scholar
King, E.G. (1955) Cp (51–298°K) of Ca aluminates. Journal of Physical Chemistry, 59, 218220.CrossRefGoogle Scholar
Kino, Y. and Lüthi, B. (1971) Magneticand elastic properties of zinc-chromite. Solid State Communications, 9, 805808.CrossRefGoogle Scholar
Kino, Y., Lüthi, B. and Mullen, M.E. (1972) Cooperative Jahn-Teller phase-transition in Nickel- Zinc-chromite system. Journal of the Physical Society of Japan, 33, 687697.CrossRefGoogle Scholar
Klemme, S. (1998) Experimental and thermodynamic studies of upper mantle phase relations. Research School of Earth Sciences, Australian National University.Google Scholar
Klemme, S. and O’Neill, H.St. C. (1997) The reaction MgCr2O4 + SiO2 = Cr2 O3 + MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4). Contributions to Mineralogy and Petrology, 130, 5965.CrossRefGoogle Scholar
Klemme, S. and O’Neill, H.St.C. (2000) The effect of Cr on the solubility of Al in orthopyroxene: experiments and thermodynamicm odelling. Contributions to Mineralogy and Petrology, 140, 8498.CrossRefGoogle Scholar
Klemme, S. and van Miltenburg, J.C. (2002) Thermodynamic properties of nickel chromite (NiCr2O4) based on adiabatic calorimetry at low temperatures. Physics and Chemistry of Minerals, 29, 663667.CrossRefGoogle Scholar
Klemme, S. and van Miltenburg, J.C. (2003) Thermodynamic properties of hercynite (FeAl2O4) based on adiabatic calorimetry at low temperatures. American Mineralogist, 88, 6872.CrossRefGoogle Scholar
Klemme, S., O’Neill, H.St.C., Schnelle, W. and Gmelin, E. (2000) The heat capacity of MgCr2O4, FeCr2O4 and Cr2O3 at low temperatures and derived Thermodynamic properties. American Mineralogist, 85, 16861693.CrossRefGoogle Scholar
Kondo, S., Urano, C., Kurihara, Y., Nohara, M. and Takagi, H. (2000) From the geometrically frustrated antiferromagnets ZnV2O4 and ZnCr2O4 to the heavymass Fermi liquid LiV2O4 . Journal of the Physical Society of Japan, 69, 139143.Google Scholar
Kubaschewski, O., Alcock, C.B. and Spencer, P.J. (1993) Materials Thermochemistry. Pergamon Press, Oxford, UK.Google Scholar
Lee, S.-H., Broholm, C., Kim, T.H., RatcliffII, W. and Cheong, S.-W. (2000) Local spin resonance and spin-peierls-like phase transition in a geometrically frustrated antiferromagnet. Physical Review Letters, 84, 37183721.CrossRefGoogle Scholar
Lee, S.H., Broholm, C., Ratcliff, W., Gasparovic, G., Huang, Q., Kim, T.H. and Cheong, S.W. (2002) Emergent excitations in a geometrically frustrated magnet. Nature, 418, 856858.CrossRefGoogle Scholar
Martinho, H., Moreno, N.O., Sanjurjo, J.A., Rettori, C., Garcia-Adeva, A.J., Huber, D.L., Oseroff, S.B., Ratcliff II, W., Cheong, S.-W., Pagliuso, P.G., Sarrao, J.L. and Martins, G.B. (2001a) Studies of the three-dimensional frustrated antiferromagnetic ZnCr2O4 . Journal of Applied Physics, 89, 70507052.CrossRefGoogle Scholar
Martinho, H., Moreno, N.O., Sanjurjo, J.A., Rettori, C., Garcia-Adeva, A.J., Huber, D.L., Oseroff, S.B., Ratcliff, W., Cheong, S.-W., Pagliuso, P.G., Sarrao, J.L. and Martins, G.B. (2001b) Magnetic properties of the frustrated antiferromagnetic spinel ZnCr2O4 and the spin-glass Zn1–xCdxCr2O4 (x=0.05,0.10). Physical Review B, 64, 024208-1-6.CrossRefGoogle Scholar
Müller, F. and Kleppa, O.J. (1973) Thermodynamics of formation of chromite spinels. Journal of Inorganic Nuclear Chemistry, 35, 26732678.CrossRefGoogle Scholar
Nichols, G.T., Berry, R.F. and Green, D.H. (1992) Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system: geothermobarometry and applications. Contributions to Mineralogy and Petrology, 111, 362377.CrossRefGoogle Scholar
O’Neill, H.St.C. and Dollase, W.A. (1994) Crystal structures and cation distribution in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4. Physics and Chemistry of Minerals, 20, 541555.CrossRefGoogle Scholar
Oka, Y., Steinke, P. and Chatterjee, N.D. (1984) Thermodynamic mixing properties of Mg(Al,Cr)2O4 spinel crystalline solutions at high pressures and temperatures. Contributions to Mineralogy and Petrology, 87, 196204.CrossRefGoogle Scholar
Park, B.-H. and Kim, D.-S. (1999) Thermodynamic properties of NiCr2O4–NiFe2O4 spinel solid solution. Bulletin of the Korean Chemical Society, 20, 939942.Google Scholar
Preston-Thomas, H. (1990) The International Temperature Scale of 1990 (ITS-90). Metrologia, 27, 310.CrossRefGoogle Scholar
Ratcliff, W., Lee, S.H., Broholm, C., Cheong, S.W. and Huang, Q. (2002) Freezing of spin correlated nanoclusters in a geometrically frustrated magnet. Physical Review B, 65, article no. 220406.CrossRefGoogle Scholar
Ringwood, A.E. (1975) Composition and Petrology of the Earth's Mantle. McGraw-Hill Book Co., New York, 363 pp.Google Scholar
Sack, R.O. and Ghiorso, M.S. (1991) Chromian spinels as perogenetic indicators: Thermodynamics and petrological applications. American Mineralogist, 76, 827847.Google Scholar
Shulters, J.C. and Bohlen, S.R. (1989) The stability of hercynite and hercynite-gahnite spinels in corundumor quartz-bearing assemblages. Journal of Petrology, 30, 10171031.CrossRefGoogle Scholar
Spry, P.G. and Scott, S.D. (1986) The stability of zincian spinel in sulfide systems and their potential as exploration guides for metamorphosed massive sulfide deposits. Economic Geology, 81, 14461463.CrossRefGoogle Scholar
Stoddard, E.F. (1979) Zinc-rich hercynite in high-grade metamorphic rocks: A product of the dehydration of staurolite. American Mineralogist, 64, 736741.Google Scholar
van Miltenburg, J.C., van den Berg, G.J.K. and van Bommel, M.J. (1987) Construction of an adiabatic calorimeter. Measurements of the molar heat capacity of synthetic sapphire and of n-Heptane. Journal of Chemical Thermodynamics, 19, 11291137.Google Scholar
van Miltenburg, J.C., van Genderen, A.C.G. and van den Berg, G.J.K. (1998) Design improvements in adiabatic calorimetry. The heat capacity of cholesterol between 10 and 425 K. Thermochimica Acta, 319, 151162.Google Scholar
Whitney, D.L., Hirschmann, M.M. and Miller, M.G. (1993) Zincian ilmenite-ecandrewsite from a pelitic shist, Death Valley, California, and the paragenesis of (Zn,Fe)TiO3 solid solution in metamorphicroc ks. The Canadian Mineralogist, 31, 425436.CrossRefGoogle Scholar