Skip to main content Accessibility help

Electron backscatter diffraction analysis and orientation mapping of monazite

  • S. M. Reddy (a1), C. Clark (a1), N. E. Timms (a1) and B. M. Eglington (a2)


Electron backscatter diffraction (EBSD) analysis of monazite requires a comparison of empirically collected electron backscatter patterns (EBSPs) with theoretical diffraction data, or ‘match units’, derived from known crystallographic parameters. Published crystallographic data derived from compositionally varying natural and synthetic monazite are used to calculate ten different match units for monazite. These match units are used to systematically index EBSPs obtained from four natural monazite samples with different compositions. Analyses of EBSD data, derived from the indexing of five and six diffraction bands using each of the ten match units for 10,000 EBSPs from each of the four samples, indicate a large variation in the ability of the different match units to correctly index the different natural samples. However, the use of match units derived from either synthetic Gd or Eu monazite crystallographic data yield good results for three of the four analysed monazites. Comparison of sample composition with published monazite compositions indicates that these match units are likely to yield good results for the EBSD analysis of metamorphic monazite. The results provide a clear strategy for optimizing the acquisition and analysis of EBSD data from monazite but also indicate the need for the collection of new crystallographic structure data and the subsequent generation of more appropriate match units for natural monazite.


Corresponding author


Hide All
Bingen, B., Demaiffe, D. and Hertogen, J. (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern norway. Geochimica et Cosmochimica Acta, 60, 13411354.
Boatner, L.A. (2002) Synthesis, structure, and properties of monazite, pretulite, and xenotime. Pp. 87121 in: Phosphates – Geochemical, Geobiological and Materials Importance (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48, The Mineralogical Society of America, Washington D.C and The Geochemical Society, St. Louis, Missouri, USA.
Cherniak, D.J., Watson, E.B., Grove, M. and Harrison, T.M. (2004) Pb diffusion in monazite: A combined rbs/sims study. Geochimica et Cosmochimica Acta, 68, 829840.
Chichagov, A.V., Varlamov, D.A., Dilanyan, R.A., Dokina, T.N., Drozhzhina, N.A., Samokhvalova, O.L. and Ushakovskaya, T.V. (2001) Mincryst: A crystallographic database for minerals, local and network (www) versions. Crystallography Reports, 46, 876879.
Clark, C., Mumm, A.S. and Faure, K. (2005) Timing and nature of fluid flow and alteration during Mesoproterozoicsh ear zone formation, Olary domain, South Australia. Journal of Metamorphic Geology, 23, 147164.
Clark, C., Hand, M., Kelsey, D.E. and Goscombe, B. (2007) Linking crustal reworking to terrane accretion. Journal of the Geological Society, 164, 937940.
Claves, S.R. and Deal, A. (2005) Orientation dependence of ebsd pattern quality. Microscopy and Microanalysis, 11, 514515.
Cocherie, A. and Albarède, F. (2001) An improved UTh- Pb age calculation for electron microprobe dating of monazite. Geochimica et Cosmochimica Acta, 65, 45094522.
Corrie, S.L. and Kohn, M.J. (2008) Trace-element distributions in silicates during prograde metamorphic reactions: Implications for monazite formation. Journal of Metamorphic Geology, 26, 451464.
Finger, F., Broska, I., Roberts, M.P. and Schermaier, A. (1998) Replacement of primary monazite by apatiteallanite- epidote coronas in an amphibolite facies granite gneiss from the eastern alps. American Mineralogist, 83, 248–58.
Förster, H.J. (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany; Part I, the monazite-(ce)-brabantite solid solution series. American Mineralogist, 83, 1302–15.
Franz, G., Andrehs, G. and Rhede, D. (1996) Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany. European Journal of Mineralogy, 8, 1097.
Ghouse, K.M. (1968) Refinement of the crystal structure of heat-treated monazite crystal. Indian Journal of Pure and Applied Physics, 6, 265268.
Harrison, T.M., Catlos, E.J. and Montel, J.M. (2002) UTh- Pb dating of phosphate minerals. Pp. 523558 in: Phosphates - Geochemical, Geobiological and Materials Importance (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48, The Mineralogical Society of America, Washington D.C and The Geochemical Society, St. Louis, Missouri, USA.
Hay, R.S. (2004) Climb-dissociated dislocations in monazite at low temperature. Journal of the American Ceramic Society, 87, 11491152.
Hay, R.S. (2005) Twin-dislocation interaction in monazite (monoclinic lapo4). Philosophical Magazine, 85, 373386.
Kelsey, D.E., Clark, C. and Hand, M. (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology, 26, 199212.
Kohn, M.J., Wieland, M.S., Parkinson, C.D. and Upreti, B.N. (2005) Five generations of monazite in Langtang gneisses: Implications for chronology of the Himalayan metamorphicc ore. Journal of Metamorphic Geology, 23, 399406.
Lloyd, G.E. and Freeman, B. (1994) Dynamic recrystallization of quartz under greenschist facies conditions. Journal of Structural Geology, 16, 867–81.
Montel, J.M. (1993) A model for monazite/melt equilibrium and application to the generation of graniticmagmas. Chemical Geology, 110, 127146.
Montel, J.M., Foret, S., Veschambre, M., Nicollet, C. and Provost, A. (1996) Electron microprobe dating of monazite. Chemical Geology, 131, 3753.
Moser, D.E., Davis, W.J., Reddy, S.M., Flemming, R.L. and Hart, R.J. (2009) Zircon U-Pb strain chronometry reveals deep impact-triggered flow. Earth and Planetary Science Letters, 277, 7379.
Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S. and Meyer, C. (2009) Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geoscience, 2, 133136.
Ni, Y., Hughes, J.M. and Mariano, A.N. (1995) Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80, 2126.
Prior, D.J., Boyle, A.P., Brenker, F., Cheadle, M.C., Day, A., Lopez, G., Peruzzo, L., Potts, G.J., Reddy, S., Spiess, R., Timms, N.E., Trimby, P., Wheeler, J. and Zetterström, L. (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84, 17411759.
Prior, D.J., Wheeler, J., Peruzzo, L., Spiess, R. and Storey, C. (2002) Some garnet microstructures: An illustration of the potential of orientation maps and misorientation analysis in microstructural studies. Journal of Structural Geology, 24, 9991011.
Pyle, J.M. and Spear, F.S. (2003) Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. American Mineralogist, 88, 338351.
Pyle, J.M., Spear, F.S., Wark, D.A., Daniel, C.G. and Storm, L.C. (2005) Contributions to precision and accuracy of monazite microprobe ages. American Mineralogist, 90, 547577.
Rapp, R.P. and Watson, E.B. (1986) Monazite solubility and dissolution kinetics: Implications for the thorium and light rare earth chemistry of felsic magmas. Contributions to Mineralogy and Petrology, 94, 304316.
Rasmussen, B., Fletcher, I.R. and Muhling, J.R. (2007) In situ U-Pb dating and element mapping of three generations of monazite: Unravelling cryptic tectonothermal events in low-grade terranes. Geochimica et Cosmochimica Acta, 71, 670690.
Reddy, S.M., Timms, N.E., Trimby, P., Kinny, P.D., Buchan, C. and Blake, K. (2006) Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness. Geology, 34, 257260.
Reddy, S.M., Timms, N.E., Pantleon, W. and Trimby, P. (2007) Quantitative characterization of plastic deformation of zircon and geological implications. Contributions to Mineralogy and Petrology, 153, 625645.
Reddy, S.M., Timms, N.E. and Eglington, B.M. (2008) Electron backscatter diffraction analysis of zircon: A systematic assessment of match unit characteristics and pattern indexing optimization. American Mineralogist, 93, 187197.
Reddy, S.M., Timms, N.E., Hamilton, P.E. and Smyth, H.R. (2009) Deformation-related microstructures in magmaticzirc on and implications for diffusion. Contributions to Mineralogy and Petrology, 157, 231244.
Rubatto, D., Hermann, J. and Buick, I. (2006) Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, central Australia). Journal of Petrology, 47, 19731996.
Timms, N.E. and Reddy, S.M. (2009) Response of cathodoluminescence to crystal-plastic deformation in zircon. Chemical Geology, 261, 1123.
Timms, N., Kinny, P. and Reddy, S. (2006) Enhanced diffusion of uranium and thorium linked to crystal plasticity in zircon. Geochemical Transactions, 7, 10.
Wilby, P.R., Page, A.A., Zalasiewicz, J.A., Milodowski, A.E., Williams, M. and Evans, J.A. (2007) Syntectonic monazite in low-grade mudrocks: A potential geochronometer for cleavage formation? Journal of the Geological Society, 164, 5356.
Williams, M.L. and Jercinovic, M.J. (2002) Microprobe monazite geochronology: Putting absolute time into microstructural analysis. Journal of Structural Geology, 24, 10131028.
Williams, M.L., Jercinovic, M.J. and Terry, M.P. (1999) Age mapping and dating of monazite on the electron microprobe; deconvoluting multistage tectonic histories. Geology, 27, 10231026.
Williams, M.L., Jercinovic, M.J., Goncalves, P. and Mahan, K. (2006) Format and philosophy for collecting, compiling and reporting microprobe monazite ages. Chemical Geology, 225, 115.
Wyckoff, R.W.G. (1963) Crystal Structures. Wiley, New York.
Zhang, S., Karato, S., Fitz Gerald, J., Faul, U.H. and Zhou, Y. (2000) Simple shear deformation of olivine aggregates. Tectonophysics, 316, 133152.
Zhu, X.K. and O’Nions, R.K. (1999) Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: A case study from the Lewisian terrain. Earth and Planetary Science Letters, 171, 209–20.


Type Description Title
Supplementary materials

Reddy et al. supplementary material
Table 3

 Excel (45 KB)
45 KB
Supplementary materials

Reddy et al. supplementary material
Table 4

 Excel (37 KB)
37 KB

Electron backscatter diffraction analysis and orientation mapping of monazite

  • S. M. Reddy (a1), C. Clark (a1), N. E. Timms (a1) and B. M. Eglington (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.