Skip to main content Accessibility help
×
Home

The effect of pressure on thermal diffusivity in pyroxenes

  • S. A. Hunt (a1) (a2) (a3), A. M. Walker (a4), R. J. McCormack (a2), D. P. Dobson (a2), A. S. Wills (a3) and L. Li (a1)...

Abstract

The thermal diffusivity of diopside, jadeite and enstatite were measured at simultaneous pressures and temperatures of up to 7 GPa and 1200 K using the X-radiographic Ångström method. The measurements herein show that the pressure dependency of thermal diffusivity in pyroxenes is significantly greater than in olivine or garnet and that in the MORB-layer of a subducting slab the thermal diffusivity of pyroxenes are a factor of 1.5 greater than that of olivine. The temperature dependence of all the data sets is well described by a low-order polynomial fit to 1/K and the pressure dependence is exponential in 1/K, formulations which are consistent with the damped harmonic oscillator model for thermal properties.

Copyright

Corresponding author

References

Hide All
Berman, R.G. and Brown, T.H. (1985) Heat capacity of minerals in the system Na2O–K2O–CaO–MgO– FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation. Contributions to Mineralogy and Petrology, 89, 168–183.
Brown, J.M. (1999) The NaCl pressure standard. Journal of Applied Physics, 86, 5808–.
Chai, M., Brown, J.M. and Slutsky, L.J. (1996) Thermal diffusivity of mantle minerals. Physics and Chemistry of Minerals, 23, 470–475.
de Koker, N. (2010) Thermal conductivity of MgO periclase at high pressure: implications for the D”region. Earth and Planetary Science Letters, 292, 392–398.
Dobson, D.P., Hunt, S.A., Li, L. and Weidner, D.J. (2008) Measurement of thermal diffusivity at high pressures and temperatures using synchrotron radio-graphy. Mineralogical Magazine, 72, 539–544.
Dobson, D.P., Hunt, S.A., McCormack, R., Lord, O.T., Weidner, D.J., Li, L. and Walker, A.M. (2010) Thermal diffusivity of MORB-composition rocks to 15 GPa: implications for triggering of deep seismicity. High Pressure Research, 30, 406–414.
Gasparik, T. (1989) Transformation of enstatite–diopside–jadeite pyroxenes to garnet. Contributions to Mineralogy and Petrology, 102, 389–405.
Goncharov, A.F., Beck, P., Struzhkin, V.V., Haugen, B.D. and Jacobsen, S.D. (2009) Thermalconductivity of lower-mantle minerals. Physics of the Earth and Planetary Interiors, 174, 24–32.
Hofmeister, A.M. (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 1699–1706.
Hofmeister, A.M. (2006) Thermaldiffu sivity of garnets at high temperature. Physics and Chemistry of Minerals, 33, 45–62.
Hofmeister, A.M. (2007) Pressure dependence of thermaltra nsport properties. Proceedings of the National Academy of Sciences, 104, 9192–9197.
Hofmeister, A.M. (2010) Thermaldiffusivity of oxide perovskite compounds at elevated temperature. Journal of Applied Physics, 107, http://dx.doi.org/10.1063/1.3371815.
Hofmeister, A.M. and Pertermann, M. (2008) Thermal diffusivity of clinopyroxenes at elevated temperature. European Journal of Mineralogy, 20, 537–549.
Hofmeister, A.M., Branlund, J. M. and Pertermann, M. (2007) Properties of rock and minerals – thermal conductivity of the earth. Pp. 543–577 in: Treatise in Geophysics, volume 2 (Schubert, G. and Price, G.D., editors). Elsevier, Amsterdam, 656 pp.
Jackson, J.M., Palko, J.W., Andrault, D., Sinogeikin, S.V., Lakshtanov, D.L., Wang, J., Bass, J.D. and Zha, C.-S. (2003) Thermalexpansion of natural orthoenstatite to 1473 K. European Journal of Mineralogy, 15, 469–473.
Kanamouri, H., Fujii, N. and Mizutani, H. (1968) Thermaldiffusivity measurement of rock-forming minerals from 300 to 1100 K. Journal of Geophysical Research, 73, 595–605.
Katsura, T. (1993) Thermal diffusivity of silica glass at pressures up to 9 GPa. Physics and Chemistry of Minerals, 20, 201–208.
Katsura, T. (1995) Thermaldiffusivity of olivine under upper mantle conditions. Geophysical Journal International, 122, 63–69.
Khedari, J., Benigni, P., Rogez, J. and Mathieu, J. (1995) New apparatus for thermal-diffusivity measurements of refractory solid materials by the periodic stationary method. Review of Scientific Instruments, 66, 193–198.
Kincaid, C. and Sacks, I.S. (1997) Thermala nd dynamical evolution of the upper mantle in subduction zones. Journal of Geophysical Research, 102(B6), 12613–.
Kittel, C. (2004) Introduction to Solid State Physics, 8th edition. Wiley, New York, 704 pp.
Knight, K.S. and Price, G.D. (2008) Powder neutron diffraction studies of clinopyroxenes. 1. The crystal structure and thermoelastic properties of jadeite between 1.5 and 270 K. The Canadian Mineralogist, 46, 1593–1622.
Kung, J., Jackson, I. and Liebermann, R.C. (2011) High temperature elasticity of polycrystalline orthoenstatite (MgSiO3). American Mineralogist, 96, 577–585.
Li, L., Raterron, P., Weidner, D.J. and Chen, J. (2003) Olivine flow mechanisms at 8 GPa. Physics of the Earth and Planetary Interiors, 138, 113–129.
Mauler, A., Bystricky, M., Kunze, K. and Mackwell, S. (2000) Microstructures and lattice preferred orientations in experimentally deformed clinopyroxene aggregates. Journal of Structural Geology, 22, 1633–1648.
Nestola, F., Gatta, G.D. and Boffa Ballaran, T. (2006) The effect of Ca substitution on the elastic and structural behavior of orthoenstatite. American Mineralogist, 91, 809–815.
Osako, M., Ito, E. and Yoneda, A. (2004) Simultaneous measurements of thermal conductivity the thermal diffusivity for garnet and olivine under high pressure. Physics of the Earth and Planetary Interiors, 143–144, 320–.
Pertermann, M. and Hofmeister, A.M. (2006) Thermal diffusivity of olivine-group minerals at high temperature. American Mineralogist, 91, 1747–1760.
Petrunin, G.I. and Popov, V.G. (1995) Temperature dependence of lattice thermal conductivity of Earth's mineralsubs tance. Physics of the Solid Earth, 30, 617–623. [English translation].
Presnall, D.C. (1995) Phase diagrams of Earth-forming materials. Pp. 248–268 in: Mineral Physics and Crystallography: A Handbook of Physical Constants (Ahrens, T.J., editor). American Geophysics Union, Washington D.C., 354 pp.
Ringwood, A.E. (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica et Cosmochimica Acta, 55, 2083–2110.
Schatz, J.F. and Simmons, G. (1972) Thermalconductivity of Earth materials at high temperatures. Journal of Geophysical Research, 77, 6966–6983.
Schloessin, H.H. and Dvořák, Z. (1972) Anisotropic lattice thermal conductivity in enstatite as a function of pressure and temperature. Geophysics Journal of the Royal Astronomical Society, 27, 499–516.
Schubert, G., Turcotte, D.L. and Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge, UK, 940 pp.
Stackhouse, S., Stixrude, L. and Karki, B.B. (2010) Thermal conductivity of periclase (MgO) from first principles. Physical Review Letters, 104, http://dx.doi.org/10.1103/PhysRevLett.103.125902.
Weidner, D.J., Vaughan, M.T., Wang, L., Long, H., Li, L., Dixon, N.A. and Durham, W.B. (2010) Precise stress measurements with white synchrotron x rays. Review of Scientific Instruments, 81, http://dx.doi.org/10.1063/1.3263760.
Xu, Y., Shankland, T.J., Linhardt, S., Rubie, D.C., Langenhorst, F. and Klasinski, K. (2004) Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Physics of the Earth and Planetary Interiors, 143–144, 336–.
Zhao, Y., Dreele, R.B.V., Shankland, T.J., Weidner, D.J., Zhang, J., Wang, Y. and Gasparik, T. (1997) Thermoelastic equation of state of jadeite NaAlSi2O6: an energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction. Geophysical Research Letters, 24, 5–8.

Keywords

The effect of pressure on thermal diffusivity in pyroxenes

  • S. A. Hunt (a1) (a2) (a3), A. M. Walker (a4), R. J. McCormack (a2), D. P. Dobson (a2), A. S. Wills (a3) and L. Li (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed