Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T02:57:45.649Z Has data issue: false hasContentIssue false

Description and crystal structure of a new mineral, edwardsite, Cu3Cd2(SO4)2(OH)6·4H2O, from Broken Hill, New South Wales, Australia

Published online by Cambridge University Press:  05 July 2018

P. Elliott*
Affiliation:
School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
J. Brugger
Affiliation:
School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
T. Caradoc-Davies
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia

Abstract

Edwardsite, Cu3Cd2(SO4)2(OH)6·4H2O, is a new mineral from the Block 14 Opencut, Broken Hill, New South Wales, Australia. It occurs as druses of tabular and bladed crystals up to 0.06 mm in size, associated with niedermayrite and christelite. Edwardsite is pale blue, transparent with vitreous lustre and has excellent cleavage parallel to {100}. Density was not measured but the calculated density, from the empirical formula, is 3.53 g cm–3 and the Mohs hardness is ∼3. Optically, it is biaxial negative with α ∼ 1.74, β = 1.762(4), γ ∼ 1.77 and 2Vcalc. ∼ +62°. The optical orientation is X = b, Y ∼ a, Z ∼ c. Electron microprobe analysis gave (wt.%): CdO 32.43, CuO 28.06, ZnO 2.26, FeO 0.08, SO3 20.35, H2Ocalc. (from crystal-structure analysis) 14.14, totalling 99.32. The empirical formula, calculated on the basis of 18 oxygen atoms is Cu2.77Cd1.98Zn0.22Fe0.01(SO4)2.00(OH)5.95·4.06H2O. Edwardsite is monoclinic, space group P21/c, with a = 10.863(2) Å, b = 13.129(3) Å, c = 11.169(2) Å, β = 113.04(3)°, V = 1465.9(5) Å3 (single-crystal data) and Z = 4. The eight strongest lines in the powder diffraction pattern are [d (Å), (I/I0), (hkl)]: 9.991, (90), (100); 5.001, (90), (200, 21); 4.591, (45), (20); 3.332, (60), (300, 032); 3.005, (30), (03); 2.824, (40), (2); 2.769, (55), (20, 042, 10); 2.670, (45), (2). The crystal structure was determined by direct methods and refined to R1 = 3.21% using 1904 observed reflections with Fo > 4σ(Fo) collected using synchrotron X-ray radiation (λ = 0.773418 Å). The structure is based on infinite sheets of edge-sharing Cuϕ6 (ϕ: O2–, OH) octahedra and Cdϕ7 (ϕ: O2–, H2O) polyhedra parallel to (100). The sheets are decorated on both sides by corner-sharing (SO4) tetrahedra, which also corner-link to isolated Cdϕ6 octahedra, thus connecting adjacent sheets. Moderate-strong to weak hydrogen bonding provides additional linkage between sheets.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adiwidjaja, G., Friese, K., Klaska, K.-H. and Schlüter, J. (1996) The crystal structure of christelite Zn3Cu2(SO4)2(OH)6·4H2O. Zei tschrift für Kristallographie, 211, 518521.Google Scholar
Birch, W.D. (1999) The Minerals. Pp. 88356 in: Minerals of Broken Hill (Birch, W.D., editor) Broken Hill Council, Broken Hill, Australia.Google Scholar
Both, R.A. (1973) Minor element geochemistry of sulphide minerals in the Broken Hill lode (N.S.W.) in relation to the origin of the ore. Mineralium Deposita, 8, 349369.CrossRefGoogle Scholar
Bregeault, J.M. and Herpin, P. (1970) Crystal structure of CdSO4.H2O. Bulletin. Société Français de Minéralogie et de Cristallographie, 93, 3742. (in French).Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond–valence parameters for solids. Acta Crystallographica B, 47, 192197.CrossRefGoogle Scholar
Brown, I.D. (1996) VALENCE: a program for calculating bond valences. Journal of Applied Crystallography, 29, 479480.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond–valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica B, 41, 244247.CrossRefGoogle Scholar
Burns, P.C. and Hawthorne, F.C. (1996) Static and dynamic Jahn–Teller effects in Cu2+ oxysalts. The Canadian Mineralogist, 34, 10891105.Google Scholar
Burns, P.C., Cooper, M.A. and Hawthorne, F.C. (1995) Claringbullite: a Cu2+ oxysalt with Cu2+ in trigonal-prismatic coordination. The Canadian Mineralogist, 33, 633639.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1996) The crystal structure of keyite, Cu3(Zn,Cu)4Cd2(AsO4)6(H2O)2, an oxysalt mineral with essential cadmium. The Canadian Mineralogist, 34, 623630.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2000) Highly undersaturated anions in the crystal structure of andyrobertsite–calcio-andyrobertsite, a doubly acid arsenate of the form K(Cd,Ca)[ (AsO4)4 {As(OH)2O2}](H2O)2 . The Canadian Mineralogist, 38, 817830.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (2004) The crystal structure of goldquarryite, (Cu2+,☐)(Cd,Ca)2Al3 (PO4)4F2(H2O)10{(H2O),F}2, a secondary phosphate from the Gold Quarry mine, Eureka County, Nevada U.S.A. The Canadian Mineralogist, 42, 753761.CrossRefGoogle Scholar
Eby, R.K. and Hawthorne, F.C. (1993) Structural relationships in copper oxysalt minerals. I. Structural hierarchy. Acta Crystallographica B, 49, 2856.CrossRefGoogle Scholar
Edwards, A.B. (1955) Cadmium in the Broken Hill lode. Proceedngs of the Australasian Institute of Mining and Mellallurgy, 176, 7196.Google Scholar
Elliott, P., Brugger, J., Pring, A., Cole, M.L., Willis, A.C. and Kolitsch, U. (2008) Birchite, a new mineral from Broken Hill, New South Wales, Australia: description and structure refinement. American Mineralogist, 93, 910917.CrossRefGoogle Scholar
Elliott, P., Turner, P., Jensen, P., Kolitsch, U. and Pring, A. (2009) Description and crystal structure of nyholmite, a new mineral related to hureaulite, from Broken Hill, New South Wales, Australia, Mineralogical Magazine, 73, 723735.CrossRefGoogle Scholar
Giester, G., Rieck, B. and Brandstätter, F. (1998) Niedermayrite, Cu4Cd(SO4)2(OH)6·4H2O, a new mineral from the Lavrion District, Greece. Mineralogy and Petrology, 63, 934.CrossRefGoogle Scholar
Giester, G., Kolitsch, U., Leverett, P., Turner, P. and Williams, P.A. (2007) The crystal structures of lavendulan, sampleite, and a new polymorph of sampleite. European Journalof Mineralogy, 19, 7593.CrossRefGoogle Scholar
Gentsch, M. and Weber, K. (1984) Structure of langite, Cu4[(OH)6(SO4)]·2(H2O). Acta Crystallographica C, 40, 13091311.CrossRefGoogle Scholar
Hawthorne, F.C. and Groat, L.A. (1985) The crystal structure of wroewolfeite, a mineral with [Cu4(OH)6(SO4)(H2O)] sheets. American Mineralogist, 70, 10501055.Google Scholar
Hawthorne, F.C. and Schindler, M.S. (2000) Topological enumeration of decorated [Cu2+ϕ2]N sheets in hydroxy-hydrated copper-oxysalt minerals. The Canadian Mineralogist, 38, 751761.CrossRefGoogle Scholar
Hawthorne, F.C., Kimata, M. and Eby, R.K. (1993) The crystal structure of spangolite, a complex copper sulfate sheet mineral. American Mineralogist, 78, 649652.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy, 40. Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Hunter, B.A. (1998) Rietica - A Visual Rietveld Program. Commission on Powder Diffraction Newsletter, 20, 21.Google Scholar
Jahn, H.A. and Teller, E. (1937) Stability of polyatomic molecules in degenerate electronic states. Proceedings of the Royal Society, Series A, 161, 220236.Google Scholar
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Medenbach, O. and Gebert, W. (1993) Lautenthalite, PbCu4[(OH)6|(SO4)2]·3H2O, the Pb analogue of devillite – a new mineral from the Harz mountains, Germany. Neues Jahrbuch fur Mineralogie Monatshefte, 401407.Google Scholar
Mellini, M. and Merlino, S. (1978) Ktenasite, another mineral with [(Cu,Zn)2(OH)3O]– octahedral sheets. Zeitschrift für Kristallographie, 147, 129140.CrossRefGoogle Scholar
Mellini, M. and Merlino, S. (1979) Posnjakite: [Cu4(OH)6(H2O)O] octahedral sheets in its structure. Zeitschrift für Kristallographie, 149, 249257.Google Scholar
Merlino, S., Pasero, M., Sabelli, C. and Trosti-Ferroni, R. (1992) Crystal structure refinements of spangolite, a hydrated basic sulphate of copper and aluminum, from three different occurrences. Neues Jahrbuch für Mineralogie Monatshefte, 349357.Google Scholar
Mumme, W.G., Sarp, H. and Chiappero, P.J.. (1994) A note on the crystal structure of schulenbergite, Archives des Sciences, Genève, 47, 117124.Google Scholar
Orlandi, P. and Bonaccorsi, E. (2009) Montetrisaite, a new hydroxy-hydrated copper sulphate from Italy. The Canadian Mineralogist, 47, 143151.CrossRefGoogle Scholar
Oswald, H.R. (1969) Kristallstruktur von Cadmium-Kupfer-Hydroxidnitrat, CdCu3(OH)6(NO3)2·H2O. Helvetica Chimica Acta, 52, 23692380.CrossRefGoogle Scholar
Plimer, I.R. (1984) The mineralogical history of the Broken Hill Lode, NSW. Australian Journal of Earth Sciences, 31, 379402.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ ϕ(ρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis, (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Sabelli, C. and Zanazzi, P.F. (1968) The crystal structure of serpierite. Acta Crystallographica B, 24, 12141221.CrossRefGoogle Scholar
Sabelli, C. and Zanazzi, P.F. (1972) The crystal structure of devillite. Acta Crystallographica B, 28, 11821189.CrossRefGoogle Scholar
Sejkora, J. and Kotrlý, M. (1998) A new cadmium sulfate natural phase from Radvanice near Trutnov (Czech Republic). Bulletin of the Czech Geological Survey, 73, 321326.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.CrossRefGoogle Scholar
Shape Software (1997) ATOMS for Windows and Macintosh V 4.0, Kingsport, Tennessee, USA.Google Scholar
Shape Software (2004) SHAPE for Windows and Macintosh V 7.1.2, Kingsport, Tennessee, USA.Google Scholar
Sheldrick, G.M. (1997 a) SHELXS-97, a Program for the Solution of Crystal Structures. University of Göttingen, Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997 b) SHELXL-97, a Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany.Google Scholar
Shepard, C.U. (1837) Description of Edwardsite, a New Mineral. American Journal of Science, 32, 162166.Google Scholar
Shepard, C.U. (1840) On the identity of edwardsite with monazite (mingite) and on the Composition of the Missouri meteorite. American Journal of Science, 39, 249255.Google Scholar
Stevens, B.P.J. (1998) The origins of the Broken Hill rock types and their relevance to the mineralisation. Pp. 109114 in: Abstracts from Broken Hill Exploration Initiative annual meeting, 1998. Australian Geological Survey Organisation Record 1998/25.Google Scholar
Willis, I.L., Brown, R.E., Stroud, W.J. and Stevens, B.P.J. (1983) The Early Proterozoic Willyama Supergroup: Stratigraphic sub-division and interpretation of high to low grade metamorphic rocks in the Broken Hill Block, N.S.W. Journal of the Geological Society of Australia, 30, 195224.CrossRefGoogle Scholar
Wilson, A.I.C., editor. (1992) International Tables for Crystallography, vol. C. Kluwer Academic, Dordrecht, The Netherlands, 883pp.Google Scholar
Yvon, K., Jeitschko, W. and Parthé, E. (1977) LAZY PULVERIX, a computer program, for calculating X-ray and neutron diffraction powder patterns. Journal of Applied Crystallography, 10, 7374.CrossRefGoogle Scholar