Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T03:10:27.868Z Has data issue: false hasContentIssue false

Crystallization of nanostructured cobalt hydroxide carbonate at ambient conditions: a key precursor of Co3O4

Published online by Cambridge University Press:  02 January 2018

J. González-López
Affiliation:
Department of Geology, University of Oviedo, Calle Jesús Arias de Velasco s/n, Oviedo 33005, Spain
Á. Fernández-González
Affiliation:
Department of Geology, University of Oviedo, Calle Jesús Arias de Velasco s/n, Oviedo 33005, Spain
A. Jiménez*
Affiliation:
Department of Geology, University of Oviedo, Calle Jesús Arias de Velasco s/n, Oviedo 33005, Spain

Abstract

Crystals of Co2CO3(OH)2 have been synthesized under ambient conditions, in contrast to hydrothermal methods reported previously. We have developed a simple but efficient methodology to obtain an initial amorphous phase that evolves to a crystalline cobalt hydroxide carbonate after one week of maturation. X-ray diffraction analysis indicates that this phase crystallizes in the space group P21/a (a = 12.886(6), b = 9.346(3), c = 3.156(1) Å, β = 110.358(6)°). The platelet morphology of Co2CO3(OH)2 agrees with its lamellar crystal structure. High-resolution transmission electron microscopy (HRTEM) reveals that each individual platelet is comprised of nanodomains disoriented with respect to their neighbours. The kinetics and the activation energy (Ea = 6.26 kJ mol–1) of the transformation process have been estimated using the rate constant method. The precipitation of solids leads to a decrease in the cobalt concentration in the solution (∼88%) reaching values of ∼150 ppm, which can be considered a successful reduction from the perspective of water quality. The calcination in air of the synthetized platelets produced exclusively Co3O4. The thermo-X-ray difraction results confirm that Co2CO3(OH)2 is transformed over a small range of temperatures (225–235°C) into pure Co3O4. HRTEM images show that the lamellar nanomorphology is preserved in the Co3O4 phase. Therefore, understanding the crystallization behaviour of Co2CO3(OH)2 can help to minimize environmental problems caused by cobalt pollution and may facilitate the management of methods to obtain phases with specific nanomorphologies used widely in material sciences.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alwan, A.K., Thomas, J.H. and Williams, P.A. (1980) Mineral formation from aqueous solution. Part III. The stability of aurichalcite, (Zn,Cu)5(CO3)2(OH)6, and rosasite (Cu,Zn)2(CO3)(OH)2 . Transition Metal Chemistry, 5, 35.CrossRefGoogle Scholar
Ando, M., Kobayashi, T, lijima, S. andHaruta, M. (1997) Optical recognition of CO and H2 by use of gas-sensitive-Co3O4 composite films. Journal of Materials Chemistry, 7, 17791783.CrossRefGoogle Scholar
Barber, D.M., Malone, P.G. and Larson, R.J. (1975) The effect of cobalt ion on nucleation of calcium-carbonate polymorphs. Chemical Geology, 16, 239241.CrossRefGoogle Scholar
Barceloux, D.G. (1999) Cobalt. Clinical Toxicology, 37, 201216.Google ScholarPubMed
Chen, J.M., Hsieh, C.T., Huang, H.W., Huang, Y.H., Lin, H.H., Liu, M.H., Liao, S.C. and Shih, H.C. (2008) Synthesis of Composite Nanofibers for Applications in Lithium Batteries., Industrial Technology Research Institute, USA. Patent US7323218 B Google Scholar
Deliens, M. and Piret, P. (1980) Kolwezite, Cu-Co hydroxycarbonate, analog of glaukosphaerite and rosasite. Bulletin de Mineralogia, 103, 179—184.CrossRefGoogle Scholar
Di Lorenzo, F., Rodriguez-Galan, R.M. and Prieto, M. (2014) Kinetics of the solvent-mediated transformation of hydromagnesite into magnesite at different temperatures. Mineralogical Magazine, 78, 13631372.CrossRefGoogle Scholar
Frost, R.L., Wain, D.L., Martens, W.N. and Jagannadha Reddy, B. (2007) The molecular structure of selected minerals of the rosasite group — an XRD, SEM and infrared spectroscopic study. Polyhedron, 26, 275283.CrossRefGoogle Scholar
Gebauer, D., Völkel, A. and Cölfen, H. (2008) Stable prenucleation calcium carbonate clusters. Science, 322, 18191822.CrossRefGoogle ScholarPubMed
Gebauer, D., Kellermeier, M., Gale, J.D., Bergström, L. and Cölfen, H. (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chemical Society Reviews, 43, 23482371.CrossRefGoogle ScholarPubMed
Geng, B., Zhan, F., Jiang, H., Xing, Z. and Fang, C. (2008) Facile production of self-assembly hierarchical dumbbell-like CoOOH nanostructures and their room-temperature CO-gas-sensing properties. Crystal Growth and Design, 8, 34973500.CrossRefGoogle Scholar
Girgsdies, F. and Behrens, M. (2012) On the structural relations of malachite. I. The rosasite and ludwigite structure families. Acta Crystallographica Section B: Structural Science, 68, 107117.CrossRefGoogle ScholarPubMed
González-López, J., Ruiz-Hernández, S.E., Fernández-González, Á., Jiménez, A., de Leeuw, N.H. and Grau-Crespo, R. (2014) Cobalt incorporation in calcite: Thermochemistry of (Ca,Co)CO3 solid solutions from density functional theory simulations. Geochimica et Cosmochimica Acta, 142, 205216.CrossRefGoogle Scholar
Katsikopoulos, D., Fernández-González, Á., Prieto, A.C. and Prieto, M. (2008) Co-crystallization of Co (ii) with calcite: Implications for the mobility of cobalt in aqueous environments. Chemical Geology, 254, 87100.CrossRefGoogle Scholar
Li, B., Xie, Y., Wu, C., Li, Z. and Zhang, J. (2006) Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures. Materials Chemistry and Physics, 99, 479–86.CrossRefGoogle Scholar
Li, W.-Y., Xu, L.-N. and Chen, J. (2005) Co3O4nanomaterials in lithium-ion batteries and gas sensors. Advanced Functional Materials, 99, 851857.CrossRefGoogle Scholar
Meldrum, F.C. and Sear, R.P. (2008) Now you see them. Science, 322, 18021803.CrossRefGoogle Scholar
Nassar, M.Y. and Ahmed, I.S. (2011) Hydrothermal synthesis of cobalt carbonates using different counter ions: An efficient precursor to nano-sized cobalt oxide (Co3O4). Polyhedron, 30, 24312437.CrossRefGoogle Scholar
Nickel, E.H. and Berry, L.G. (1981) The new mineral nullaginite and additional data on the related minerals rosasite and glaukosphaerite. The Canadian Mineralogist, 19, 315324.Google Scholar
Parkhurst, D.L. and Appelo, C.A. J. (1999) User's guide to PHREEQC (version 2) - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water Resources Investigations Report 99-4259. U.S. Geological Survey, Denver, Colorado, USA, 312 pp.Google Scholar
Pekov, I.V., Perchiazzi, N., Merlino, S., Kalachev, V.N., Merlini, M. and Zadov, A.E. (2007) Chukanovite, Fe2(CO3)(OH)2, a new mineral from the weathered iron meteorite Dronino. European Journal of Mineralogy, 19, 891898.CrossRefGoogle Scholar
Perchiazzi, N. (2006) Crystal structure determination and rietveld refinement of rosasite and mcguinnessite. Zeitschrift für Kristallographie Supplements, 23, 505510.CrossRefGoogle Scholar
Perchiazzi, N. and Merlino, S. (2006) The malachite-rosasite group: Crystal structures of glaukosphaerite and pokrovskite. European Journal of Mineralogy, 18, 787792.CrossRefGoogle Scholar
Pryce, M.W. and Just, J. (1974) Glaukosphaerite, a new nickel analogue of rosasite. Mineralogical Magazine, 39, 737743.CrossRefGoogle Scholar
Putnis, A. (1992) An Introduction to Mineral Sciences. Cambridge University Press.CrossRefGoogle Scholar
Robert, R., Romer, S., Reller, A. and Weidenkaff, A. (2005) Nano structured complex cobalt oxides as potential materials for solar thermoelectric power generators. Advanced Engineering Materials, 7, 303308.CrossRefGoogle Scholar
Roberts, A.C., Jambor, J.L. and Grice, J.D. (1986) The X-ray crystallography of rosasite from Tsumeb, Namibia. Powder Diffraction, 1, 5657.CrossRefGoogle Scholar
Shannon, R. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, Section A: Foundations and Advances, 32, 751767.CrossRefGoogle Scholar
Susse, P. (1967) Verfeinerung der kristallstruktur des malachits, Cu2(OH)2CO3. Acta Crystallographica, 22, 146151.CrossRefGoogle Scholar
Tong, G., Liu, Y and Guan, J. (2014) In situ gas bubble-assisted one-step synthesis of polymorphic Co3O4nanostructures with improved electrochemical performance for lithium ion batteries. Journal of Alloys and Compounds, 601, 167174.CrossRefGoogle Scholar
Tuti, S. and Pepe, F. (2008) On the catalytic activity of cobalt oxide for the steam reforming of ethanol. Catalysis Letters, 122, 196203.CrossRefGoogle Scholar
Wang, J., Niu, B., Du, G., Zeng, R., Chen, Z., Guo, Z. and Dou, S. (2011) Microwave homogeneous synthesis of porous nanowire Co3O4 arrays with high capacity and rate capability for lithium ion batteries. Materials Chemistry and Physics, 126, 747754.CrossRefGoogle Scholar
Wang, L., Li, S., Ruiz-Agudo, E., Putnis, C.V. and Putnis, A. (2012) Posner's cluster revisited: Direct imaging of nucleation and growth of nanoscale calcium phosphate clusters at the calcite-water interface. CrystEngComm, 126, 62526256.CrossRefGoogle Scholar
Wang, L., Deng, J., Lou, Z. and Zhang, T. (2014) Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: One-pot synthesis and toluene-sensing properties. Sensors and Actuators B: Chemical, 201, 16.CrossRefGoogle Scholar
Wang, S., Lü, G. and Tang, W (2010) Synthesis and crystal structure of Co2(OH)2CO3 by Rietveld method. Powder Diffraction, 25, S7S10.CrossRefGoogle Scholar
Wang, S.L., Qian, L.Q., Xu, H., Lü, G.L., Dong, W.J. and Tang, W.H. (2009) Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets. Journal of Alloys and Compounds, 476, 739743.CrossRefGoogle Scholar
Wang, Y., Zhang, Y., Cao, Y., Lu, M. and Yang, J. (2008) Properties of exchange biased Co/Co3O4 bilayer films. Journal of Alloys and Compounds, 450, 128—130.CrossRefGoogle Scholar
Wu, Z.-S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., Zhou, G., Li, F. and Cheng, H.-M. (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS nano, 4, 31873194.CrossRefGoogle Scholar
Xing, W., Zhuo, S., Cui, H., Zhou, H., Si, W., Yuan, X., Gao, X. and Yan, Z. (2008) Morphological control in synthesis of cobalt basic carbonate nanorods assembly. Materials Letters, 62, 13961399.CrossRefGoogle Scholar
Yang, l.l, Cheng, H. and Frost, R.L. (2011) Synthesis and characterisation of cobalt hydroxy carbonate Co2CO3(OH)2 nanomaterials. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 78, 420428.CrossRefGoogle ScholarPubMed
Yang, W., Gao, Z., Ma, J., Zhang, X. and Wang, 1 (2014) Controlled synthesis of Co3O4 and Co3O4@MnO2nanoarchitectures and their electrochemical capacitor application. Journal of Alloys and Compounds, 611, 171178.CrossRefGoogle Scholar
Yoder, C.H., Schaeffer, R.W., McWilliams, P., Rowand, A., Liu, X. and Shambeda, 1 (2011) The synthesis of copper / zinc solid solutions of hydroxyl carbonates, sulphates, nitrates, chlorides and bromides. MineralogicalMagazine, 75, 2573—2582.Google Scholar
Yu, R., Tao, P., Zhou, X. andFang, Y (2008) Hydrothermal synthesis of cobalt-basic-carbonate nanobelts. Journal of Alloys and Compounds, 461, 574578.CrossRefGoogle Scholar
Yuan, Z., Huang, F., Feng, C., Sun, 1 and Zhou, Y (2003) Synthesis and electrochemical performance of nano-sized Co3O4. Materials Chemistry and Physics, 79, 14.CrossRefGoogle Scholar
Yuwono, V.M., Burrows, N.D., Soltis, J.A., Do, T.A. and Penn, R.L. (2012) Aggregation of ferrihydrite nanoparticles in aqueous systems. Faraday Discussions, 159, 235245.CrossRefGoogle Scholar
Zhao, Z., Geng, F., Bai, 1 and Cheng, H.-M. (2007) Facile and controlled synthesis of 3D nanorods-based urchinlike and nanosheets-based flowerlike cobalt basic salt nanostructures. Journal of Physical Chemistry C, 111, 38483852.CrossRefGoogle Scholar