Skip to main content Accessibility help
×
Home

Crystallization of nanostructured cobalt hydroxide carbonate at ambient conditions: a key precursor of Co3O4

  • J. González-López (a1), Á. Fernández-González (a1) and A. Jiménez (a1)

Abstract

Crystals of Co2CO3(OH)2 have been synthesized under ambient conditions, in contrast to hydrothermal methods reported previously. We have developed a simple but efficient methodology to obtain an initial amorphous phase that evolves to a crystalline cobalt hydroxide carbonate after one week of maturation. X-ray diffraction analysis indicates that this phase crystallizes in the space group P21/a (a = 12.886(6), b = 9.346(3), c = 3.156(1) Å, β = 110.358(6)°). The platelet morphology of Co2CO3(OH)2 agrees with its lamellar crystal structure. High-resolution transmission electron microscopy (HRTEM) reveals that each individual platelet is comprised of nanodomains disoriented with respect to their neighbours. The kinetics and the activation energy (Ea = 6.26 kJ mol–1) of the transformation process have been estimated using the rate constant method. The precipitation of solids leads to a decrease in the cobalt concentration in the solution (∼88%) reaching values of ∼150 ppm, which can be considered a successful reduction from the perspective of water quality. The calcination in air of the synthetized platelets produced exclusively Co3O4. The thermo-X-ray difraction results confirm that Co2CO3(OH)2 is transformed over a small range of temperatures (225–235°C) into pure Co3O4. HRTEM images show that the lamellar nanomorphology is preserved in the Co3O4 phase. Therefore, understanding the crystallization behaviour of Co2CO3(OH)2 can help to minimize environmental problems caused by cobalt pollution and may facilitate the management of methods to obtain phases with specific nanomorphologies used widely in material sciences.

Copyright

Corresponding author

References

Hide All
Alwan, A.K., Thomas, J.H. and Williams, P.A. (1980) Mineral formation from aqueous solution. Part III. The stability of aurichalcite, (Zn,Cu)5(CO3)2(OH)6, and rosasite (Cu,Zn)2(CO3)(OH)2 . Transition Metal Chemistry, 5, 35.
Ando, M., Kobayashi, T, lijima, S. andHaruta, M. (1997) Optical recognition of CO and H2 by use of gas-sensitive-Co3O4 composite films. Journal of Materials Chemistry, 7, 17791783.
Barber, D.M., Malone, P.G. and Larson, R.J. (1975) The effect of cobalt ion on nucleation of calcium-carbonate polymorphs. Chemical Geology, 16, 239241.
Barceloux, D.G. (1999) Cobalt. Clinical Toxicology, 37, 201216.
Chen, J.M., Hsieh, C.T., Huang, H.W., Huang, Y.H., Lin, H.H., Liu, M.H., Liao, S.C. and Shih, H.C. (2008) Synthesis of Composite Nanofibers for Applications in Lithium Batteries., Industrial Technology Research Institute, USA. Patent US7323218 B
Deliens, M. and Piret, P. (1980) Kolwezite, Cu-Co hydroxycarbonate, analog of glaukosphaerite and rosasite. Bulletin de Mineralogia, 103, 179—184.
Di Lorenzo, F., Rodriguez-Galan, R.M. and Prieto, M. (2014) Kinetics of the solvent-mediated transformation of hydromagnesite into magnesite at different temperatures. Mineralogical Magazine, 78, 13631372.
Frost, R.L., Wain, D.L., Martens, W.N. and Jagannadha Reddy, B. (2007) The molecular structure of selected minerals of the rosasite group — an XRD, SEM and infrared spectroscopic study. Polyhedron, 26, 275283.
Gebauer, D., Völkel, A. and Cölfen, H. (2008) Stable prenucleation calcium carbonate clusters. Science, 322, 18191822.
Gebauer, D., Kellermeier, M., Gale, J.D., Bergström, L. and Cölfen, H. (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chemical Society Reviews, 43, 23482371.
Geng, B., Zhan, F., Jiang, H., Xing, Z. and Fang, C. (2008) Facile production of self-assembly hierarchical dumbbell-like CoOOH nanostructures and their room-temperature CO-gas-sensing properties. Crystal Growth and Design, 8, 34973500.
Girgsdies, F. and Behrens, M. (2012) On the structural relations of malachite. I. The rosasite and ludwigite structure families. Acta Crystallographica Section B: Structural Science, 68, 107117.
González-López, J., Ruiz-Hernández, S.E., Fernández-González, Á., Jiménez, A., de Leeuw, N.H. and Grau-Crespo, R. (2014) Cobalt incorporation in calcite: Thermochemistry of (Ca,Co)CO3 solid solutions from density functional theory simulations. Geochimica et Cosmochimica Acta, 142, 205216.
Katsikopoulos, D., Fernández-González, Á., Prieto, A.C. and Prieto, M. (2008) Co-crystallization of Co (ii) with calcite: Implications for the mobility of cobalt in aqueous environments. Chemical Geology, 254, 87100.
Li, B., Xie, Y., Wu, C., Li, Z. and Zhang, J. (2006) Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures. Materials Chemistry and Physics, 99, 479–86.
Li, W.-Y., Xu, L.-N. and Chen, J. (2005) Co3O4nanomaterials in lithium-ion batteries and gas sensors. Advanced Functional Materials, 99, 851857.
Meldrum, F.C. and Sear, R.P. (2008) Now you see them. Science, 322, 18021803.
Nassar, M.Y. and Ahmed, I.S. (2011) Hydrothermal synthesis of cobalt carbonates using different counter ions: An efficient precursor to nano-sized cobalt oxide (Co3O4). Polyhedron, 30, 24312437.
Nickel, E.H. and Berry, L.G. (1981) The new mineral nullaginite and additional data on the related minerals rosasite and glaukosphaerite. The Canadian Mineralogist, 19, 315324.
Parkhurst, D.L. and Appelo, C.A. J. (1999) User's guide to PHREEQC (version 2) - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water Resources Investigations Report 99-4259. U.S. Geological Survey, Denver, Colorado, USA, 312 pp.
Pekov, I.V., Perchiazzi, N., Merlino, S., Kalachev, V.N., Merlini, M. and Zadov, A.E. (2007) Chukanovite, Fe2(CO3)(OH)2, a new mineral from the weathered iron meteorite Dronino. European Journal of Mineralogy, 19, 891898.
Perchiazzi, N. (2006) Crystal structure determination and rietveld refinement of rosasite and mcguinnessite. Zeitschrift für Kristallographie Supplements, 23, 505510.
Perchiazzi, N. and Merlino, S. (2006) The malachite-rosasite group: Crystal structures of glaukosphaerite and pokrovskite. European Journal of Mineralogy, 18, 787792.
Pryce, M.W. and Just, J. (1974) Glaukosphaerite, a new nickel analogue of rosasite. Mineralogical Magazine, 39, 737743.
Putnis, A. (1992) An Introduction to Mineral Sciences. Cambridge University Press.
Robert, R., Romer, S., Reller, A. and Weidenkaff, A. (2005) Nano structured complex cobalt oxides as potential materials for solar thermoelectric power generators. Advanced Engineering Materials, 7, 303308.
Roberts, A.C., Jambor, J.L. and Grice, J.D. (1986) The X-ray crystallography of rosasite from Tsumeb, Namibia. Powder Diffraction, 1, 5657.
Shannon, R. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, Section A: Foundations and Advances, 32, 751767.
Susse, P. (1967) Verfeinerung der kristallstruktur des malachits, Cu2(OH)2CO3. Acta Crystallographica, 22, 146151.
Tong, G., Liu, Y and Guan, J. (2014) In situ gas bubble-assisted one-step synthesis of polymorphic Co3O4nanostructures with improved electrochemical performance for lithium ion batteries. Journal of Alloys and Compounds, 601, 167174.
Tuti, S. and Pepe, F. (2008) On the catalytic activity of cobalt oxide for the steam reforming of ethanol. Catalysis Letters, 122, 196203.
Wang, J., Niu, B., Du, G., Zeng, R., Chen, Z., Guo, Z. and Dou, S. (2011) Microwave homogeneous synthesis of porous nanowire Co3O4 arrays with high capacity and rate capability for lithium ion batteries. Materials Chemistry and Physics, 126, 747754.
Wang, L., Li, S., Ruiz-Agudo, E., Putnis, C.V. and Putnis, A. (2012) Posner's cluster revisited: Direct imaging of nucleation and growth of nanoscale calcium phosphate clusters at the calcite-water interface. CrystEngComm, 126, 62526256.
Wang, L., Deng, J., Lou, Z. and Zhang, T. (2014) Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: One-pot synthesis and toluene-sensing properties. Sensors and Actuators B: Chemical, 201, 16.
Wang, S., Lü, G. and Tang, W (2010) Synthesis and crystal structure of Co2(OH)2CO3 by Rietveld method. Powder Diffraction, 25, S7S10.
Wang, S.L., Qian, L.Q., Xu, H., Lü, G.L., Dong, W.J. and Tang, W.H. (2009) Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets. Journal of Alloys and Compounds, 476, 739743.
Wang, Y., Zhang, Y., Cao, Y., Lu, M. and Yang, J. (2008) Properties of exchange biased Co/Co3O4 bilayer films. Journal of Alloys and Compounds, 450, 128—130.
Wu, Z.-S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., Zhou, G., Li, F. and Cheng, H.-M. (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS nano, 4, 31873194.
Xing, W., Zhuo, S., Cui, H., Zhou, H., Si, W., Yuan, X., Gao, X. and Yan, Z. (2008) Morphological control in synthesis of cobalt basic carbonate nanorods assembly. Materials Letters, 62, 13961399.
Yang, l.l, Cheng, H. and Frost, R.L. (2011) Synthesis and characterisation of cobalt hydroxy carbonate Co2CO3(OH)2 nanomaterials. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 78, 420428.
Yang, W., Gao, Z., Ma, J., Zhang, X. and Wang, 1 (2014) Controlled synthesis of Co3O4 and Co3O4@MnO2nanoarchitectures and their electrochemical capacitor application. Journal of Alloys and Compounds, 611, 171178.
Yoder, C.H., Schaeffer, R.W., McWilliams, P., Rowand, A., Liu, X. and Shambeda, 1 (2011) The synthesis of copper / zinc solid solutions of hydroxyl carbonates, sulphates, nitrates, chlorides and bromides. MineralogicalMagazine, 75, 2573—2582.
Yu, R., Tao, P., Zhou, X. andFang, Y (2008) Hydrothermal synthesis of cobalt-basic-carbonate nanobelts. Journal of Alloys and Compounds, 461, 574578.
Yuan, Z., Huang, F., Feng, C., Sun, 1 and Zhou, Y (2003) Synthesis and electrochemical performance of nano-sized Co3O4. Materials Chemistry and Physics, 79, 14.
Yuwono, V.M., Burrows, N.D., Soltis, J.A., Do, T.A. and Penn, R.L. (2012) Aggregation of ferrihydrite nanoparticles in aqueous systems. Faraday Discussions, 159, 235245.
Zhao, Z., Geng, F., Bai, 1 and Cheng, H.-M. (2007) Facile and controlled synthesis of 3D nanorods-based urchinlike and nanosheets-based flowerlike cobalt basic salt nanostructures. Journal of Physical Chemistry C, 111, 38483852.

Keywords

Related content

Powered by UNSILO

Crystallization of nanostructured cobalt hydroxide carbonate at ambient conditions: a key precursor of Co3O4

  • J. González-López (a1), Á. Fernández-González (a1) and A. Jiménez (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.