Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T04:31:05.930Z Has data issue: false hasContentIssue false

The crystal structure of faustite and its copper analogue turquoise

Published online by Cambridge University Press:  05 July 2018

U. Kolitsch*
Affiliation:
Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstr. 14, A-1090 Wien, Austria
G. Giester
Affiliation:
Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstr. 14, A-1090 Wien, Austria

Abstract

The crystal structure of faustite, ZnAl6(PO4)4(OH)8.4H2O, was determined using single-crystal data (Mo-Kα X-radiation, CCD area detector, 1624 unique reflections, R1 = 4.91%, wR2 = 9.23%), and compared with results of a reinvestigation of the structure of its copper analogue turquoise, CuAl6(PO4)4(OH)8.4H2O (2737 unique reflections, R1 = 2.81%, wR2 = 6.90%). Both are isostructural and crystallize in space group P, with a = 7.419(2) [turquoise: 7.410(1)], b = 7.629(3) [7.633(1)], c = 9.905(3) [9.904(1)] Å, α = 69.17(2) [68.42(1)], β = 69.88(2) [69.65(1)], γ = 64.98(2) [65.05(1)]°, V = 462.2(3) [460.27(10)] Å3, and Z = 1. The structure consists of distorted MO6 polyhedra (M = Zn, Cu), AlO6 octahedra and PO4 tetrahedra. By edge- and corner-sharing of these polyhedra a fairly dense three-dimensional framework is formed which is further strengthened by a system of hydrogen bonds. The metal atoms in the unique MO6 (M = Zn or Cu) polyhedron show a distorted [2+2+2]-coordination, the distortion being more pronounced in turquoise. About 10% of the M site is vacant in both minerals. In turquoise, a previously undetected structural site with a very low occupancy of (possibly) Cu is present at the position (Ý,0,Ý).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallogr., B47, 192–7.CrossRefGoogle Scholar
Brown, I.D. (1996) VALENCE: a program for calculating bond valences. J. Appl. Crystallogr., 29, 479–80.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., B41, 244–7.CrossRefGoogle Scholar
Cid-Dresdner, H. (1965) Determination and refinement of the crystal structure of turquois, CuAl6(PO4)4(OH)8·4H2O. Zeits. Kristallogr., 121, 87113.CrossRefGoogle Scholar
Cid-Dresdner, H. and Villarroel, H.S. (1972) Crystallographic study of rashleighite, a member of the turquoise group. Amer. Mineral., 57, 1681–91.Google Scholar
Eby, R.K. and Hawthorne, F.C. (1993) Structural relationships in copper oxysalt minerals. I. Structural hierarchy. Acta Crystallogr., B49, 2856.CrossRefGoogle Scholar
Erd, R.C., Foster, M.D. and Proctor, P.D. (1953) Faustite, a new mineral, the zinc analogue of turquois. Amer. Mineral., 38, 964–72.Google Scholar
Foord, E.E. and Taggart, J.E. Jr., (1998) A reexamination of the turquoise group: the mineral aheylite, planerite (redefined), turquoise and coeruleolactite. Mineral. Mag., 62, 93111.CrossRefGoogle Scholar
Giuseppetti, G., Mazzi, F. and Tadini, C. (1989) The crystal structure of chalcosiderite, CuFe3+ 6(PO4)4(OH)8·4H2O. Neues Jahrb. Mineral. Mh., 227-39.Google Scholar
Pring, A, Kolitsch, U. and Francis, G. (2000) Additions to the mineralogy of the Iron Monarch deposit, Middleback Ranges, South Australia. Austral. J. Mineral., 6, 923.Google Scholar
Shape Software (1999) ATOMS for Windows and Macintosh V5.0.Kingsport, TN 37663, USA.Google Scholar
Sharma, K.B.N., Moorthy, L.R., Reddy, B.J. and Vedanand, S. (1988) EPR and electronic absorption spectra of a copper bearing turquoise mineral. Phys. Lett. A, 132, 293–7.CrossRefGoogle Scholar
Sheldrick, G.M. (1997 a) SHELXS-97, a program for the solution of crystal structures. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1991 b) SHELXL-97, a program for crystal structure refinement. University of Göttingen, Germany.Google Scholar