Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T01:21:20.069Z Has data issue: false hasContentIssue false

The crystal structure of balićžunićite, Bi2O(SO4)2, a new natural bismuth oxide sulfate

Published online by Cambridge University Press:  02 January 2018

Daniela Pinto*
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, via E. Orabona 4, I-70125 Bari, Italy
Anna Garavelli
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, via E. Orabona 4, I-70125 Bari, Italy
Tonci Balić-Žunić
Affiliation:
Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark

Abstract

The crystal structure of balićžunićite, Bi2O(SO4)2, a new mineral species from the La Fossa crater of Vulcano (Aeolian Islands, Italy), was solved from single-crystal X-ray diffraction data and refined to R = 0.0507. The structure is triclinic, space group P1, with a = 6.7386(3), b = 11.1844(5), c = 14.1754(7) Å, α = 80.082(2), β = 88.462(2)°, γ = 89.517(2)°, V = 1052.01(8) Å3 and Z = 6. The crystal structure consists of six independent Bi sites, six S sites and 27 O sites of which three are oxo oxygen atoms not bonded to sulfur. Bismuth and S atoms are arranged close to a eutectic pattern parallel to the (100) plane. The planes are stacked atom on atom such that Bi always overlays S and vice versa. This structural feature is shared with the known structure of the high-temperature polymorph of the same compound, stable at T >535°C. However, the sequences of Bi and S atoms in the two structures are different and so are the arrangements of oxygen atoms. Characteristic building blocks in the structure of balićžunićite are clusters of five Bi atoms which form nearly planar trapezoidal Bi5 groups with oxo oxygens located in the centres of the three Bi3 triangles, which form the trapezoids. The trapezoidal Bi5O39+ ions are joined along [100] with SO42– groups by means of strong bismuth-sulfate oxygen bonds, forming infinite [100] rods with composition Bi5O3(SO4)5. One sixth of the Bi atoms do not participate in trapezoids, but form, with additional SO42– groups, rows of composition BiSO4+, also parallel to [100]. [Bi5O3(SO4)5] rods form infinite layers parallel to (010) with [BiSO4+] rows located on the irregular surface of contact between adjacent layers. Bi atoms occur in four different coordination types, all showing the stereochemical influence of the Bi3+ lone electron pair. In this respect the crystal structure of balićžunićite shows greater variability than its high-temperature polymorph which has only two types of the Bi coordination spheres present in balićžunićite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, S., Åström, A., Galy, J. and Meunier, G. (1973) Simple calculations of bond lengths and bond angles in certain oxides, fluorides or oxide fluorides of Sb3+, Te4+ and Pb2+ . Journal of Solid State Chemistry, 6, 187190.CrossRefGoogle Scholar
Aurivillius, B. (1987) Pyrolysis products of Bi2(SO4)3. Crystal structure of Bi26O27(SO4)12 and Bi14O16(SO4)5. Acta Chemica Scandinavica, A41, 415422.Google Scholar
Aurivillius, B. (1988) Pyrolysis products of Bi4(SO4)3. II. Crystal structure of Bi2O(SO4)2. Acta Chemica Scandinavica, A42, 95110.CrossRefGoogle Scholar
Balić-Žunić, T. and Makovicky, E. (1996) Determination of the centroid or “the best centre” of a coordination polyhedron. Acta Crystallographica, B52, 7881.CrossRefGoogle Scholar
Balić-Žunić, T. and Vicković, I. (1996) IVTON program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. Journal of Applied Crystallography, 29, 305306.CrossRefGoogle Scholar
Berlepsch, P., Makovicky, E. and Balić-Žunić, T. (2001) Crystal chemistry of meneghinite homologues and related sulfosalts. Neues Jahrbuch für Mineralogie, Monatshefte, 115135.Google Scholar
Blessing, B. (1995) An empirical correction for absorption anisotropy. Acta Crystallographica, A51, 3338.CrossRefGoogle Scholar
Blower, S.K. and Greaves, C. (1988) The structure of b-Bi2O3 from powder neutron diffraction data. Acta Crystallographica, C44, 587589.Google Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Bruker (2003a) APEX2. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA.Google Scholar
Bruker (2003b) SAINT-IRIX. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA.Google Scholar
Capitani, G.C., Catelani, T., Gentile, P., Lucotti, A. and Zema, M. (2013) Cannonite [Bi2O(SO4)(OH)2] from Alfenza (Crodo, Italy): crystal structure and morphology. Mineralogical Magazine, 77, 30673079.CrossRefGoogle Scholar
Crumpton, T.E. and Greaves, C. (2004) The structural chemistry and oxide ion conducting properties of the new bismuth oxide sulfate, Bi8O11(SO4). Journal of Materials Chemistry, 14, 24332437.CrossRefGoogle Scholar
Douglade, P.J. and Mercier, R. (1980) Structure du tétrasulfate d’hydroxodioxotétraantimoine(III) et de dioxonium monohydraté Sb4 IIIO2(OH)(SO4)4 (H5O2)·H2O (ou Sb2 O32SO3·2H2O). Acta Crystallographica, B36, 29192925.CrossRefGoogle Scholar
Francesconi, M.G., Kibyshire, A.L. and Greaves, C. (1998) Synthesis and structure of Bi14O20(SO4), A new bismuth oxide sulfate. Chemistry of Materials, 10, 626632.CrossRefGoogle Scholar
Galy, J., Meunier, G., Andersson, S. and Åström, A. (1975) Stéréochimie des eléments comportant des paires non liées: Ge(II), As(III), Se(IV), Br(V), Sn(II), Sb(III), Te(IV), I(V), Xe(VI), Tl(I), Pb(II), et Bi(III) (oxydes, fluorures et oxyfluorures). Journal of Solid State Chemistry, 13, 142159.CrossRefGoogle Scholar
Garavelli, A., Pinto, D., Bindi, L. and Mitolo, D. (2013) Leguernite, IMA 2013-051. CNMNC Newsletter No. 17, October 2013, page 3002; Mineralogical Magazine, 77, 29973005.Google Scholar
Garavelli, A., Pinto, D., Bindi, L. and Mitolo, D. (2014) Leguernite, Bi12.67O14(SO4)5, a new Bi-oxysulfate from the fumarole deposit of “La Fossa” crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 78, 16291645.CrossRefGoogle Scholar
Gillespie, R.J. (1963a) The valence-shell electron-pair repulsion (VSEPR) theory of directed valency (Review). Journal of Chemical Education, 40, 295301.CrossRefGoogle Scholar
Gillespie, R.J. (1963b) The stereochemistry of five-coordination. Part I. Non-transition elements. Journal of the Chemical Society, 46724678.CrossRefGoogle Scholar
Gillespie, R.J. (2008) Fifty years of the VSEPR model. Coordination Chemistry Reviews, 252, 13151327.CrossRefGoogle Scholar
Gilllespie, R.J. and Nyholm, R.S. (1957) Inorganic stereochemistry. Quarterly Review of the Chemical Society, 11, 339380.CrossRefGoogle Scholar
Graunar, M. and Lazarini, F. (1982) Di-m-hydroxobis[ aquasulfatobismuth(III)]. Acta Crystallographica, B38, 28792881.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X-ray Crystallography, Vol. 4. The Kynoch Press, Birmingham, UK. Jones, W.M. (1984) Equilibrium pressures over the systems bismuth trisulfate dibismuthmonoxydisulfate and dibismuthmonoxydisulfate dibismuthdioxymonosulfate. Slow transformation between two crystalline forms of dibismuthmonoxydisulfate. Journal of Chemical Physics, 80, 3408. Kinberger, B. (1970) The crystal structure of SbPO4. Acta Chemica Scandinavica, 24, 320328.Google Scholar
Malmros, G. (1970) The crystal structure of a-Bi2O3. Acta Chemica Scandinavica, 24, 384396.CrossRefGoogle Scholar
Makovicky, E. and Balić-Žunić, T. (1998) New measure of distortion for coordination polyhedra. Acta Crystallographica, B54, 766773.CrossRefGoogle Scholar
Ohlberg, S.M. (1959) The crystal structure of antimony pentachloride at-30ºC. Journal of the American Chemical Society, 81, 811813.CrossRefGoogle Scholar
Olsen, L.A., Lopez-Solano, J., García, A., Balic-Zunic, T. and Makovicky, E. (2010) Dependence of the lone pair of bismuth on coordination environment and pressure: an ab initio study on Cu4Bi5S10 and Bi2S3. Journal of Solid State Chemistry, 183, 21332143.CrossRefGoogle Scholar
Palmer, K.J., Wong, R.Y. and Lee, K.S. (1972) The crystal structure of ferric ammonium sulfate trihydrate, FeNH4(SO4)2·3H2O. Acta Crystallographica, B28, 236241.CrossRefGoogle Scholar
Pinto, D., Garavelli, A. and Mitolo, D. (2013) Balićzˇunićite, IMA 2012-098. CNMNC Newsletter No. 16, August 2013, page 2699; Mineralogical Magazine, 77, 26952709.Google Scholar
Pinto, D., Garavelli, A. and Mitolo, D. (2014) Balićzˇunićite, Bi2O(SO4)2, a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 78, 10431055.CrossRefGoogle Scholar
Robinson, E.A. and Gillespie, R.J. (2003) Ligand close packing and the geometry of the fluorides of the nonmetals of periods 3, 4, and 5. Inorganic Chemistry, 42 38653872.CrossRefGoogle Scholar
Rögner, P. (2005) Riomarinait, ein neues Wismutmineral vom Abbau Falcacci, Rio Marina, Elba (Italien). Aufschluss, 56, 5360.Google Scholar
Sheldrick, G.M. (2008a) SADABS. Version 2008/1. University of Göttingen, Germany. Sheldrick, G.M. (1997a) SHELXS-97. A program for automatic solution of crystal structures. University of Göttingen, Germany. Sheldrick, G.M. (1997b) SHELXL-97. A program for crystal structure refinement. University of Göttingen, Germany. Smirnov, V.I., Ponomareva, V.G., Yuklin, Y.M. and Uvarov, N.F. (2003) Fluorite-related phases in the Bi2O3-SO3 system. Solid State Ionics, 156, 7984.Google Scholar
Spek, A.L. (2005) PLATON, A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands. Stanley, C.J., Roberts, A.C., Harris, D.C., Criddle, A.J. and Szymański, J.T. (1992) Cannoni t e , Bi20(OH)2SO4, a new mineral from Marysvale, Utah, USA. Mineralogical Magazine, 56, 605609.Google Scholar
Supplementary material: PDF

Pinto et al. supplementary material

Figure 5

Download Pinto et al. supplementary material(PDF)
PDF 534.8 KB
Supplementary material: PDF

Pinto et al. supplementary material

Figure 6

Download Pinto et al. supplementary material(PDF)
PDF 1.7 MB
Supplementary material: File

Pinto et al. supplementary material

Table 4

Download Pinto et al. supplementary material(File)
File 114.7 KB
Supplementary material: File

Pinto et al. supplementary material

Table 6

Download Pinto et al. supplementary material(File)
File 87.6 KB