Skip to main content Accessibility help
×
Home

Crystal structure and formula revision of deliensite, Fe[(UO2)2(SO4)2(OH)2](H2O)7

  • J. Plášil (a1), J. Hauser (a2), V. Petříček (a1), N. Meisser (a3), S. J. Mills (a4), R. Škoda (a5), K. Fejfarová (a1), J. Čejka (a6), J. Sejkora (a6), J. Hloušek (a7), J.-M. Johannet (a8), V. Machovič (a9) (a10) and L. Lapčák (a9)...

Abstract

The crystal structure of deliensite, Fe[(UO2)2(SO4)2(OH)2](H2O)7, was solved by direct methods and refined to R 1 = 6.24% for 5211 unique observed reflections [I obs > 3σ(I)], on a crystal that was found to consist of rotational and inversion (merohedral) twins, from Jeroným mine, Abertamy in the Czech Republic. The presence of four twin domains was taken into account in the refinement. The structure is orthorhombic, space group Pnn2, with unit-cell parameters a = 15.8514(9), b = 16.2478(7), c = 6.8943(3) Å, V = 1775.6(1) Å3 and Z = 4. The crystal structure of deliensite contains uranyl-sulfate sheets with a phosphuranylite topology, consisting of dimers of edge-sharing uranyl pentagonal bipyramids linked by corner-sharing with sulfate tetrahedra. The sheets lie in the (100) plane and are decorated by [Fe2+O(H2O)5] octahedra; two weakly bonded H2O molecules are present in the interlayer. The [Fe2+O(H2O)5] octahedron is linked directly to the sheet via the uranyl oxygen atom. Adjacent sheets are linked by hydrogen bonds only. The sheet topology and geometrical isomerism is discussed and a comparison of the composition obtained from electron-probe microanalysis, powder-diffraction data, Raman and infrared spectra of deliensite samples from Mas d'Alary, Lodève, France; L'Ecarpière mine, Gétigné, France; and several localities at Jáchymov, Western Bohemia, Czech Republic is made.

Copyright

Corresponding author

*E-mail: plasil@fzu.cz

References

Hide All
Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.
Birch, W.D., Mills, S.J., Maas, R. and Hellstrom, J.C. (2011) A chronology for Late Quaternary weathering in the Murray Basin, southeastern Australia: evidence from 230Th/U dating of secondary uranium phosphates in the Lake Boga and Wycheproof granites, Victoria. Australian Journal of Earth Sciences, 58, 835845.
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130.in: Structure and Bonding in Crystals II (M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York.
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, Oxford, UK, 230 pp.
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247. [including updated parameters from http://www.ccp14.ac.uk/ccp/ web-mirrors/i-d-brown/].
Brown, I.D. and Shannon, R.D. (1973) Empirical bondstrength bond-length curves for oxides. Acta Crystallographica, A29, 266282.
Brugger, J., Burns, P.C. and Meisser, N. (2003) Contribution to the acid drainage of uranium minerals: marecottite and the zippeite group. American Mineralogist, 88, 676685.
Burns, P.C. (2001) A new uranyl sulfate chain in the structure of uranopilite. The Canadian Mineralogist, 39, 11391146.
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.
Caubel, P. (1998) Le Mas Lavayre, Hérault, un deuxiéme gıˆte de deliensite. Le Régne Minéral, 22, 1417.
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622.in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.
Čejka, J. (2004) Vibrational spectroscopy of uranyl minerals - infrared and Raman spectra of uranyl minerals. I. Uranyl, UO2 2+. Bulletin mineralogickopetrologicke ´ho Oddeˇlení Národního Muzea (Praha), 12, 4451. [in Czech].
Čejka, J. (2007) Vibrational spectra of uranyl minerals - infrared and Raman spectra of uranyl minerals. III. Uranyl sulphates. Bulletin mineralogicko-petrologicke ´ho Oddeˇlení Národního Muzea (Praha), 1415. 4046. [in Czech].
Čejka, J., Urbanec, Z., Čejka, J. Jr and Mrázek, Z. (1988) Contribution to the thermal analysis and crystal chemistry of johannite Cu[(UO2)2(SO4)2 (OH)2]·8H2O. Neues Jahrbuch für Mineralogie, Abhandlungen, 159, 297309.
Chapot, G., Couprie, R., Dumas, J., Leblanc, P. and Kerouanton, J.-L. (1996) L’uranium Vendéen, 40 ans de recherches et d’exploitations miniéres dans le Massif Armoricain. Cahiers du Patrimoine, 45, 176187.
Chen, F., Ewing, R.C. and Clark, S.B. (1999) The Gibbs free energies and enthalpies of formation of U6+ phases: an empirical method of prediction. American Mineralogist, 84, 650664.
Deditius, A.P., Utsunomiya, S. and Ewing, R.C. (2008) The chemical stability of coffinite, USiO4·nH2O; 0<n<2, associated with organic matter: a case study from Grants uranium region, New Mexico, USA. Chemical Geology, 251, 3349.
Doran, M.B., Cockbain, B.E. and O’Hare, D. (2005) Structural variation in organically templated uranium sulfate uorides. Dalton Transactions, 2005, 17741780.
Finch, R.J. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91179.in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.
Frost, R.L. and Čejka, J. (2009) A Raman spectroscopic study of the uranyl mineral rutherfordine - revisited. Journal of Raman Spectroscopy, 40, 10961103.
Halasyamani, P.S., Francis, R.J., Walker, S.M. and O’Hare, D. (1999) New layered uranium(VI) molybdates: syntheses and structures of (NH3(CH2)3NH3)(H3O)2(UO2)3(MoO4)5, C(NH2)3 (UO2)(OH)(MoO4), (C4H12N2)(UO2)(MoO4)2, and (C5H14N2 ) (UO2 ) (MoO4 ) 2·H2O. Inorganic Chemistry, 31, 278279.
Holland, T. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.
Hooft, R.W.W., Straver, L.H. and Spek, A.L. (2008) Determination of absolute structure using Bayesian statistics on Bijvoet differences. Journal of Applied Crystallography, 41, 96103.
Hoppe, R. (1979) Effective coordination number (ECoN) and mean-fictive ionic radii (Mefir). Zeitschrift für Kristallographie, 150, 2352.
Jensen, K.A., Palenik, C.S. and Ewing, R.C. (2002) U6+ phases in the weathering zone of the Bangombé U- deposit: observed and predicted mineralogy. Radiochimica Acta, 90, 761769.
Jones, P.G. (1986) The determination of absolute structure. III. An ambiguity table for the noncentrosymmetric crystalclasses . Act a Crystallographica, A42, 57.
Krivovichev, S.V. (2004) Combinatorial topology of salts of inorganic oxoacids: zero-, one- and two dimensional units with corner-sharing between coordination polyhedra. Crystallography Reviews, 10, 185232.
Krivovichev, S.V. (2009) Structural Crystallography of Inorganic Oxysalts. Oxford University Press, Oxford, UK, 320 pp.
Krivovichev, S.V. (2010) Actinyl compounds with hexavalent elements (S, Cr, Se, Mo) - structural diversity, nanoscale chemistry, and cellular automata modelling. European Journal of Inorganic Chemistry, 2010, 25942603.
Krivovichev, S.V. and Burns, P.C. (2003) Geometrical isomerism in uranyl chromates I. Crystal structures of (UO2)(CrO4)(H2O)2, [(UO2)(CrO4)(H2O)2](H2O) and [(UO2)(CrO4)(H2O)2]4(H2O)9. Zeitschrift für Kristallographie, 218, 568574.
Krivovichev, S.V. and Burns, P.C. (2007) Actinide compounds containing hexavalent cations of the VI group elements (S, Se, Mo, Cr, W). Pp. 95182.in: Structural Chemistry of Inorganic Actinide Compounds (S.V. Krivovichev, P.C. Burns and I.G. Tananaev, editors). Elsevier, Amsterdam.
Krivovichev, S.V., Gurzhii, V.V., Tananaev, I.G. and Myasoedov, B.F. (2006) Topology of inorganic complexes as a function of amine molecular structure in layered uranyl selenates. Doklady Physical Chemistry, 409, 228232.
Krivovichev, S.V., Gurzhii, V.V., Tananaev, I.G. and Myasoedov, B.F. (2009) Amine-templated uranyl selenates with chiral [(UO2)2(SeO4)3(H2O)]2- layers: topology, isomerism, structural relationships. Zeitschrift für Kristallographie, 224, 316324.
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist, 92, 118.
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H-O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.
Meisser, N., Brugger, J. and Lahaye, Y. (2002) Mineralogy and acid-mine drainage of La Creusaz uranium prospect, Switzerland. Pp. 147150.in: Uranium Deposits: From their Genesis to the Environmental Aspects, Proceedings (B. Kříbek and J. Zeman, editors). Czech Geological Survey, Prague.
Mereiter, K. (1982) Die Kristallstrukturs des Johannits, Cu(UO2 ) 2(OH)2(SO4 ) 2·8H2O. Tschermaks Mineralogische und Petrologisches Mitteilungen, 30, 4757.
Mereiter, K. (1986) Crystal structure and crystallographic properties of a schröckingerite from Joachimsthal. Tschermaks Mineralogischen und Petrographischen Mitteillungen, 35, 118.
Mills, S.J., Birch, W.D., Kolitsch, U., Mumme, W.G. and Gr ey, I . E . ( 2 008a ) Lak ebogai t e , CaNaFe3+ 2 H(UO2)2(PO4)4(OH)2(H2O)8, a new uranyl phosphate with a unique crystal structure from Victoria, Australia. American Mineralogist, 93, 691697.
Mills, S.J., Birch, W.D., Maas, R., Phillips, D. and Plimer, I.R. (2008b) Lake Boga Granite, northwestern Victoria: mineralogy, geochemistry and geochronology. Australian Journal of Earth Sciences, 55, 281299.
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley and Sons, New York.
Oelkers, E.H. and Montel, J. (2008) Phosphates and nuclear waste storage. Elements, 4, 113116.
Ok, K.M., Baek, J., Halasyamani, P.S. and O’Hare, D. (2006) New layered uranium phosphate fluorides: syntheses, structures, characterizations, and ionexchange properties of A(UO2)F(HPO4)·xH2O (A = Cs+, Rb+ , K+; x = 0–1.. Inorganic Chemistry, 45, 1020710214.
Ondruš, P., Veselovský, F. and Hloušek, J. (1997) A review of mineral associations and paragenetic groups of secondary minerals of the Jáchymov (Joachimsthal) ore district. Journal of the Czech Geological Society, 42, 109115.
Palatinus, L. and Chapuis, G. (2007) Superflip - a computer program for the solu¡tion of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. The crystallographic computing system. Institute of Physics, Prague.
Plášil, J., Sejkora, J., Čejka, J., Škácha, P., Goliáš, V., Pavlíček, R. and Hofman, P. (2008) Supergene mineralization from the dump of the uranium shaft no. 16 Háje (Příbram). Bulletin Mineralogickopetrologicke ´ho oddeˇlení Národního Muzea (Praha), 16, 4355. [in Czech].
Plášil, J., Dušek, M., Novák, M., Čejka, J., Císařová, I. and Škoda, R. (2011a) Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: description and crystal structure refinement. American Mineralogist, 96, 983991.
Plášil, J., Mills, S.J., Fejfarová, K., Dušek, M., Novák, M., Škoda, R., Čejka, J. and Sejkora, J. (2011b) The c r y s t a l s t r u c t u r e o f nat u r a l zi p p e i t e , K1.85H+ 0.15[(UO2)4O2(SO4)2(OH)2](H2O)4, from Já chymov, Czech Republic. The Canadian Mineralogist, 49, 10891103.
Plášil, J., Hloušek, J., Veselovský , F., Fejfarová, K., Dušek, M., Škoda, R., Novák, M., Čejka, J., Sejkora, J. and Ondruš , P. (2012a) Adolfpateraite, K(UO2)(SO4)(OH)(H2O), a new uranyl sulfate mineral from Jáchymov, Czech Republic. American Mineralogist, 97, 447454.
Plášil, J., Fejfarová, K., Wallwork, K.S., Dušek, M., Škoda, R., Sejkora, J., Čejka, J., Veselovský , F., Hloušek, J., Meisser, N. and Brugger, J. (2012b) Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12. American Mineralogist, 97, 17961803.
Plášil, J., Fejfarová, K., Škoda, R., Dušek, M., Marty, J. and Čejka, J. (2012c) The crystal structure of magnesiozippeite, Mg[(UO2)2O2(SO4)](H2O)3.5, from East Saddle Mine, San Juan County, Utah (U.S.A.). Mineralogy and Petrology, http:// dx.doi.org/10.1007/s00710-012.0241–7.
Pouchou, J.L. and Pichoir, F. (1985) ‘‘PAP’’ (jrZ) procedure for improved quantitative microanalysis. Pp. 104106.in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.
Schindler, M. and Hawthorne, F.C. (2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-oxysalt minerals. The Canadian Mineralogist, 46, 467501.
Serezhkin, V.N., Boiko, N.V. and Trunov, V.K. (1982) Crystal structure of Sr[UO2(OH)CrO4]2·8H2O. Journal of Structure Chemistry, 23, 270273.
Sokol, F. and Čejka, J. (1992) A thermal and mass spectrometric study of synthetic johannite [Cu(UO2)2(SO4)2(OH)2]·8H2O. Thermochimica Acta, 206, 235242.
Spek, A.L. (1988) LePage - an MS DOS program for the determination of the metrical symmetry of a t ransla tion lat t ice. Journal of Applied Crystallography, 21, 578579.
Spek, A.L. (2003) Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 713.
Spek, A.L. (2009) Structure validation in chemical crystallography. Acta Crystallographica, D65, 148155.
Tali, R., Tabachenko, V.V., Kovba, L.M. and Dem’yanets, L.N. (1994) Structure of some uranyl hydroxomolybdates. Zhurnal Neorganicheskoi Khimii, 39, 17521754. [in Russian].
Unruh, D.K., Baranay, M., Pressprich, L., Stoffer, M. and Burns, P.C. (2012) Synthesis and characterization of uranyl chromate sheet compounds containing edge-sharing dimers of uranyl pentagonal bipyramids. Journal of Solid State Chemistry, 186, 158164.
Vochten, R., Blaton, N. and Peeters, O. (1997) Deliensite, Fe(UO2)2(SO4)2(OH)2·3H2O, a new ferrous uranyl sulfate hydroxy hydrate from Mas d’Alary, Lodéve, Hérault, France. The Canadian Mineralogist, 35, 10211025.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Plášil et al. supplementary material
CIF

 Unknown (1.1 MB)
1.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed