Skip to main content Accessibility help
×
Home

Crystal structure and crystal chemistry of fluoro-potassic-magnesio-arfvedsonite from Monte Metocha, Xixano region, Mozambique, and discussion of the holotype from Quebec, Canada

  • R. Oberti (a1), M. Boiocchi (a2), F. C. Hawthorne (a3) and P. Robinson (a4)

Abstract

Fluoro-potassic-magnesio-arfvedsonite, ideally AKBNa2 c(Mg4Fe3+)TSi8O22 wF2, has been found in a dyke ∼25 km southwest of Monte Metocha, Xixano region, northeastern Mozambique. Fluoro-potassic-magnesio-arfvedsonite and low sanidine form a fine-grained mafic, ultrapotassic, peralkaline igneous rock without visible phenocrysts. The amphibole is brittle, has a Mohs hardness of 6 and a splintery fracture; it is non-fluorescent with perfect {110} cleavage and no observable parting, and has a calculated density of 3.174 gcm−3. In plane-polarized light, it is pleochroic, X= pale grey-green, Y = blue-green, Z = pale grey; X ^ c = 23.6° (in β obtuse), Yb, Z ^ c = 66.4° (in β acute). Fluoro-potassic-magnesio-arfvedsonite is biaxial negative, α = 1.652(2), β = 1.658(2), γ = 1.660(2); 2Vobs = 22.5(7)°, 2Vcalc = 30.2°. The unit-cell dimensions are a = 9.9591(4), b = 17.9529(7), c = 5.2867(2) Å, β = 104.340(1)°, V = 919.73(10) Å3, Z = 2. The nine strongest X-ray diffraction lines in the experimental powder pattern are: [d in Å(I)(hkl)]: 2.716(100)(151), 3.410(70)(131), 8.475(50)(110), 3.178(50)(310), 3.309(30)(240), 2.762(20)(31), 2.549(20)(260), 2.351(10)(51), 2.269(10)(331). Electron microprobe analysis gave: SiO2 54.25, A12O3 0.03, TiO2 1.08, FeO 6.69, Fe2O3 8.07, MgO 13.99, MnO 0.32, ZnO 0.05, CaO 1.16, Na2O 6.33, K2O 5.20, F 2.20, H2Ocalc 0.74, sum 99.18 wt.%. The formula unit, calculated on the basis of 24 (O,OH,F) with (OH+F) = 2−(2 Ti), is AKa0.98 B(Na1.18Ca0.18)∑1.99 C(Mg3.07Fe0.83 2+Mn0.04Al0.01Fe0.90 3+Ti0.12Zn0.01)∑=4.98 TSi8O22 W[Fi.o3(OH)0.73O0.24]∑2.00 and confirms the usual pattern of cation order in the amphibole structure. The presence of a significant oxo component (locally balanced by Ti at the M(1) site) is related to the crystallization conditions. The presence of Fe3+ at the T sites, originally suggested for the holotype specimen, is discounted for this amphibole composition.

Copyright

Corresponding author

References

Hide All
Bazhenov, A.G., Nedosekova, I.L., Krinova, T.V., Mironov, A.B., and Khvorov P.V. (2000) Fluor magnesioarfvedsonite NaNa2(Mg,Fe2+)4Fe3+ [Si8O22](F,OH)2 — a new mineral species of the amphibole group (Il'meny-Vishnevye mountains alkaline massif, the South Urals). Zapiski Rossiiskogo Mineralogischekogo Obshchetsva, 129, 2831.
Bingen, B., Viola, G., Griffin, W.L., Jacobs, I., Boyd, R. and 17 authors (2006) Crustal architecture of the Mozambique belt in Northeastern Mozambique: Perspective from U-Pb geochronology and Lu-Hf isotopes in zircon. Abstract, 7th International Symposium on African Geology, Stellenbosch, South Africa, 10-14 September, 2006.
Bruker, (2003) SAINT-NT Software Reference Manual, Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.
Burke, E.A.J. and Leake, B.E. (2004) “Named amphiboles”: a new category of amphiboles recognized by the International Mineralogical Association (IMA), and the proper order of prefixes to be used in amphibole names. The Canadian Mineralogist, 42, 18811883.
Hall, A. (1982) The Pendennis peralkaline minette. Mineralogical Magazine, 45, 257266.
Hawthorne, F.C. (1976) The crystal chemistry of the amphiboles: V. The structure and chemistry of arfvedsonite. The Canadian Mineralogist, 14, 346356.
Hawthorne, F.C. and Della Ventura, G. (2007) Short-range order in amphiboles. Pp. 125–172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Delia Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia and the Geochemical Society, St. Louis, Missouri, USA.
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal chemistry. Pp. 1—54 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Delia Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia and the Geochemical Society, St. Louis, Missouri, USA.
Hawthorne, F.C., Oberti, R., Ottolini, L., and Foord, E.E. (1996) Lithium-bearing fluor-arfvedsonite from Hurricane Mountain, New Hampshire: a crystal-chemical study. The Canadian Mineralogist, 34, 10151019.
Hawthorne, F.C., Oberti, R., Zanetti, A., and Nayak, V.K. (2008) The crystal chemistry of alkali amphiboles from the Kajlidongri manganese mine, India. The Canadian Mineralogist, 46, 455466.
Hogarth, D.D. (2006) Fluoro-potassic-magnesio-arfved-sonite, KNa2Mg5Si8O22F2, from the Outaouais region, Quebec, Canada. The Canadian Mineralogist, 44, 289.
Hogarth, D.D. and Lapointe, P. (1984) Amphibole and pyroxene development in fenite from Cantley, Quebec. The Canadian Mineralogist, 22, 281295.
Hogarth, D.D., Chao, G.Y. and Townsend, M.G. (1987) Potassium and fluorine-rich amphiboles from the Gatineau area, Quebec. The Canadian Mineralogist, 25, 739753.
Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N. and Whittaker, E.J.W. (2003) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. The Canadian Mineralogist, 41, 13551370.
Nickel, E.H. and Nichols, M.C. (2009) MDI-MINERAL-LE Mineral Database, version 03/2009. MDI Materials Data, Inc., Livermore, California, USA.
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles. I: Four- and six-coordinate Ti in richterite. European Journal of Mineralogy, 4, 425439.
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125–172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Delia Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia and the Geochemical Society, St. Louis, Missouri, USA.
Pekov, I.V., Chukanov, N.V., Lebedeva, Yu.S., Pushcharovsky, D.Yu., Ferraris, G., Gula, A., Zadov, A.E., Novakova, A.A. and Petersen, O.V. (2004) Potassicarfvedsonite, KNa2Fe4 2+Fe3+ Si8O22(OH)2, a K-dominant amphibole of the arfvedsonite series from agpaitic pegmatites — Mineral data, structure refinement and disorder in the A site. Neues Jahrbuch für Mineralogie Monatshefte, 12, 555574.
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ φ(pZ) procedure for improved quantitative mieroanalysis. Pp. 104–160 in: Microbeam analysis — 1985. San Francisco Press, San Francisco, California, USA.
Robinson, P., Solli, A., Engvik, A., Erambert, M., Bingen, B., Schiellerup, H. and Njange, F. (2008) Solid solution between potassic-obertiite and potas-sic-fluoro-magnesioarfvedsonite in a silica-rich lamproite from northeastern Mozambique. European Journal of Mineralogy, 20, 10111018.
Sheldrick, G.M. (1998) SADABS User Guide. University of Gottingen, Göttingen, Germany.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Oberti et al. supplementary material
Strucure Factors

 Word (137 KB)
137 KB

Crystal structure and crystal chemistry of fluoro-potassic-magnesio-arfvedsonite from Monte Metocha, Xixano region, Mozambique, and discussion of the holotype from Quebec, Canada

  • R. Oberti (a1), M. Boiocchi (a2), F. C. Hawthorne (a3) and P. Robinson (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.