Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T09:47:13.269Z Has data issue: false hasContentIssue false

Crystal structure and crystal chemistry of fluoro-potassic-magnesio-arfvedsonite from Monte Metocha, Xixano region, Mozambique, and discussion of the holotype from Quebec, Canada

Published online by Cambridge University Press:  05 July 2018

R. Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, UOS Pavia, via Ferrata 1, I-27100 Pavia, Italy
M. Boiocchi
Affiliation:
Centro Grandi Strumenti, Universitá di Pavia, via Bassi 21, I-27100 Pavia, Italy
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
P. Robinson
Affiliation:
Geological Survey of Norway, N-7491 Trondheim, Norway

Abstract

Fluoro-potassic-magnesio-arfvedsonite, ideally AKBNa2c(Mg4Fe3+)TSi8O22wF2, has been found in a dyke ∼25 km southwest of Monte Metocha, Xixano region, northeastern Mozambique. Fluoro-potassic-magnesio-arfvedsonite and low sanidine form a fine-grained mafic, ultrapotassic, peralkaline igneous rock without visible phenocrysts. The amphibole is brittle, has a Mohs hardness of 6 and a splintery fracture; it is non-fluorescent with perfect {110} cleavage and no observable parting, and has a calculated density of 3.174 gcm−3. In plane-polarized light, it is pleochroic, X= pale grey-green, Y = blue-green, Z = pale grey; X ^ c = 23.6° (in β obtuse), Yb, Z ^ c = 66.4° (in β acute). Fluoro-potassic-magnesio-arfvedsonite is biaxial negative, α = 1.652(2), β = 1.658(2), γ = 1.660(2); 2Vobs = 22.5(7)°, 2Vcalc = 30.2°. The unit-cell dimensions are a = 9.9591(4), b = 17.9529(7), c = 5.2867(2) Å, β = 104.340(1)°, V = 919.73(10) Å3, Z = 2. The nine strongest X-ray diffraction lines in the experimental powder pattern are: [d in Å(I)(hkl)]: 2.716(100)(151), 3.410(70)(131), 8.475(50)(110), 3.178(50)(310), 3.309(30)(240), 2.762(20)(31), 2.549(20)(260), 2.351(10)(51), 2.269(10)(331). Electron microprobe analysis gave: SiO2 54.25, A12O3 0.03, TiO2 1.08, FeO 6.69, Fe2O3 8.07, MgO 13.99, MnO 0.32, ZnO 0.05, CaO 1.16, Na2O 6.33, K2O 5.20, F 2.20, H2Ocalc 0.74, sum 99.18 wt.%. The formula unit, calculated on the basis of 24 (O,OH,F) with (OH+F) = 2−(2 Ti), is AKa0.98B(Na1.18Ca0.18)∑1.99C(Mg3.07Fe0.832+Mn0.04Al0.01Fe0.903+Ti0.12Zn0.01)∑=4.98TSi8O22W[Fi.o3(OH)0.73O0.24]∑2.00 and confirms the usual pattern of cation order in the amphibole structure. The presence of a significant oxo component (locally balanced by Ti at the M(1) site) is related to the crystallization conditions. The presence of Fe3+ at the T sites, originally suggested for the holotype specimen, is discounted for this amphibole composition.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bazhenov, A.G., Nedosekova, I.L., Krinova, T.V., Mironov, A.B., and Khvorov P.V. (2000) Fluor magnesioarfvedsonite NaNa2(Mg,Fe2+)4Fe3+ [Si8O22](F,OH)2 — a new mineral species of the amphibole group (Il'meny-Vishnevye mountains alkaline massif, the South Urals). Zapiski Rossiiskogo Mineralogischekogo Obshchetsva, 129, 2831.Google Scholar
Bingen, B., Viola, G., Griffin, W.L., Jacobs, I., Boyd, R. and 17 authors (2006) Crustal architecture of the Mozambique belt in Northeastern Mozambique: Perspective from U-Pb geochronology and Lu-Hf isotopes in zircon. Abstract, 7th International Symposium on African Geology, Stellenbosch, South Africa, 10-14 September, 2006.Google Scholar
Bruker, (2003) SAINT-NT Software Reference Manual, Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Burke, E.A.J. and Leake, B.E. (2004) “Named amphiboles”: a new category of amphiboles recognized by the International Mineralogical Association (IMA), and the proper order of prefixes to be used in amphibole names. The Canadian Mineralogist, 42, 18811883.CrossRefGoogle Scholar
Hall, A. (1982) The Pendennis peralkaline minette. Mineralogical Magazine, 45, 257266.CrossRefGoogle Scholar
Hawthorne, F.C. (1976) The crystal chemistry of the amphiboles: V. The structure and chemistry of arfvedsonite. The Canadian Mineralogist, 14, 346356.Google Scholar
Hawthorne, F.C. and Della Ventura, G. (2007) Short-range order in amphiboles. Pp. 125–172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Delia Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia and the Geochemical Society, St. Louis, Missouri, USA.CrossRefGoogle Scholar
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal chemistry. Pp. 1—54 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Delia Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia and the Geochemical Society, St. Louis, Missouri, USA.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Ottolini, L., and Foord, E.E. (1996) Lithium-bearing fluor-arfvedsonite from Hurricane Mountain, New Hampshire: a crystal-chemical study. The Canadian Mineralogist, 34, 10151019.Google Scholar
Hawthorne, F.C., Oberti, R., Zanetti, A., and Nayak, V.K. (2008) The crystal chemistry of alkali amphiboles from the Kajlidongri manganese mine, India. The Canadian Mineralogist, 46, 455466.CrossRefGoogle Scholar
Hogarth, D.D. (2006) Fluoro-potassic-magnesio-arfved-sonite, KNa2Mg5Si8O22F2, from the Outaouais region, Quebec, Canada. The Canadian Mineralogist, 44, 289.CrossRefGoogle Scholar
Hogarth, D.D. and Lapointe, P. (1984) Amphibole and pyroxene development in fenite from Cantley, Quebec. The Canadian Mineralogist, 22, 281295.Google Scholar
Hogarth, D.D., Chao, G.Y. and Townsend, M.G. (1987) Potassium and fluorine-rich amphiboles from the Gatineau area, Quebec. The Canadian Mineralogist, 25, 739753.Google Scholar
Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N. and Whittaker, E.J.W. (2003) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. The Canadian Mineralogist, 41, 13551370.CrossRefGoogle Scholar
Nickel, E.H. and Nichols, M.C. (2009) MDI-MINERAL-LE Mineral Database, version 03/2009. MDI Materials Data, Inc., Livermore, California, USA.Google Scholar
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles. I: Four- and six-coordinate Ti in richterite. European Journal of Mineralogy, 4, 425439.CrossRefGoogle Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125–172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Delia Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia and the Geochemical Society, St. Louis, Missouri, USA.CrossRefGoogle Scholar
Pekov, I.V., Chukanov, N.V., Lebedeva, Yu.S., Pushcharovsky, D.Yu., Ferraris, G., Gula, A., Zadov, A.E., Novakova, A.A. and Petersen, O.V. (2004) Potassicarfvedsonite, KNa2Fe4 2+Fe3+ Si8O22(OH)2, a K-dominant amphibole of the arfvedsonite series from agpaitic pegmatites — Mineral data, structure refinement and disorder in the A site. Neues Jahrbuch für Mineralogie Monatshefte, 12, 555574.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ φ(pZ) procedure for improved quantitative mieroanalysis. Pp. 104–160 in: Microbeam analysis — 1985. San Francisco Press, San Francisco, California, USA.Google Scholar
Robinson, P., Solli, A., Engvik, A., Erambert, M., Bingen, B., Schiellerup, H. and Njange, F. (2008) Solid solution between potassic-obertiite and potas-sic-fluoro-magnesioarfvedsonite in a silica-rich lamproite from northeastern Mozambique. European Journal of Mineralogy, 20, 10111018.CrossRefGoogle Scholar
Sheldrick, G.M. (1998) SADABS User Guide. University of Gottingen, Göttingen, Germany.Google Scholar
Supplementary material: File

Oberti et al. supplementary material

Strucure Factors

Download Oberti et al. supplementary material(File)
File 136.7 KB