Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-07T12:32:23.376Z Has data issue: false hasContentIssue false

Compositional evolution and cryptic variation in pyroxenes of the peralkaline Lovozero intrusion, Kola Peninsula, Russia

Published online by Cambridge University Press:  05 July 2018

L. N. Kogarko
Affiliation:
Vernadsky Institute, Kosygin Street 19, Moscow 117975, Russia
C. T. Williams*
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
A. R. Woolley
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK

Abstract

The Lovozero alkaline massif is the largest of the world's layered peralkaline intrusions (∼650 km2). We describe the evolution of clinopyroxene from the liquidus to the late residual stage throughout the whole vertical section (2.5 km thick) of the Lovozero Complex. Microprobe data (∼990 analyses) of the clinopyroxenes define a relatively continuous trend from diopside containing 15–20% hedenbergite and 10–12% aegirine components, to pure aegirine. The main substitutions during the evolution of the Lovozero pyroxenes are (Na,Fe3+,Ti) for (Ca,Mg,Fe2+). The composition of the pyroxene changes systematically upwards through the intrusion with an increase in Na, Fe3+ and Ti and decrease in Ca and Mg.

The compositional evolution of the Lovozero pyroxene reflects primary fractionation processes in the alkaline magma that differentiated in situ from the bottom to the top of the magma chamber as a result of magmatic convection, coupled with the sedimentation of minerals with different settling velocities.

The temperature interval of pyroxene crystallization is very wide and probably extends from 970 to 450°C. The redox conditions of pyroxene crystallization in the Lovozero intrusion were relatively low, approximating the QFM buffer.

Type
Editorial
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afifi, A. A. and Azen, S. P. (1979) Statistical Analysis: A Computer Oriented Approach, 2nd edition. Academic Press, New York, 488 pp.Google Scholar
Arzamastsev, A. A., Arzamastseva, L. V., Glasnev, V. N. and Raevsky, A. B. (1998) Deep structure and the composition of deep parts of Khibina and Lovozero complexes, Kola Peninsula, petrological and geophysical model. Petrologiya, 46, 478496.(in Russian).Google Scholar
Bussen, I. V. and Sakharov, A. S. (1972) Petrology of the Lovozero Alkaline Massif (in Russian). Nauka, Leningrad, 296 pp.Google Scholar
Carmichael, I. S. E. and Nicholls, J. (1967) Iron-titanium oxides and oxygen fugacities in volcanic rocks. Journal of Geophysical Research, 72, 46654687.CrossRefGoogle Scholar
Clark, A. M. (1993) Hey's Mineral Index. Mineral Species, Varieties and Synonyms. Chapman & Hall, London, 852 pp.Google Scholar
Eales, H. V. and Cawthorn, R. G. (1996) The Bushveld Complex. Pp. 181229 in: Layered Intrusions (Cawthorn, R. G., editor). Developments in Petrology, 15. Elsevier, Amsterdam.CrossRefGoogle Scholar
Ernst, W. G. (1962) Synthesis, stability relations and occurrence of riebeckite and riebeckite-arfvedsonite solid solutions. Journal of Geology, 70, 689736.CrossRefGoogle Scholar
Ferguson, A. K. (1977) The natural occurrence of aegirine-neptunite solid solution. Contributions to Mineralogy and Petrology, 60, 247253.CrossRefGoogle Scholar
Gerasimovsky, V. I., Volkov, V. P., Kogarko, L. N., Polyakov, A. I., Saprykina, T. V. and Balashov, Yu.A. (1966) The Geochemistry of the Lovozero Alkaline Massif. Part 1. Geology and Petrology. Part 2. Geochemistry. Translated 1968 by Brown, D. A.. Australian National University Press, Canberra, pp. 224 and 369 pp. (translation of original Russian text published in 1966).Google Scholar
Halama, R., Vennemann, T., Siebel, W. and Markl, G. (2005) The Gronnedal-Ika carbonatite-syenite complex, South Greenland: carbonatite formation by liquid immiscibility. Journal of Petrology, 46, 191217.CrossRefGoogle Scholar
Jones, A. P. (1984) Mafic silicates from the nepheline syenites of the Motzfeldt centre, South Greenland. Mineralogical Magazine, 48, 112.CrossRefGoogle Scholar
Jones, A. P. and Peckett, A. (1981) Zirconium-bearing aegirines from Motzfeldt, south Greenland. Contributions to Mineralogy and Petrology, 75, 251255.CrossRefGoogle Scholar
Kogarko, L. N. (1977) Genetic Problems of Agpaitic Magmas. Nauka, Moscow, 294 pp. (in Russian).Google Scholar
Kogarko, L. N. (1987) Alkaline rocks of the eastern part of the Baltic Shield (Kola Peninsula). Pp. 531544 in: Alkaline Igneous Rocks (Fitton, J. G. and Upton, B. G. J., editors). Special Publication 30, Geological Society, London.Google Scholar
Kogarko, L. N. and Khapaev, V. (1987) The modelling of formation of apatite deposits of the Khibina massif (Kola Peninsula). Pp. 589611 in: Origin of Igneous Layering (Parsons, I., editor). Reidel Publishing Company, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Kogarko, L. N., Burnham, C. W. and Shettle, D. (1977) The water regime in hyperalkaline magmas (in Russian). Geokhimiya, 5, 643651.Google Scholar
Kogarko, L. N., Kononova, V. A., Orlova, M. P. and Woolley, A. R. (1995) Alkaline Rocks and Carbonatites of the World. Part 2. Former USSR. Chapman & Hall, London, 226 pp.Google Scholar
Kogarko, L. N., Williams, C. T. and Woolley, A. R. (2002) Chemical evolution and petrogenetic implications of loparite in the layered, peralkaline Lovozero complex, Kola peninsula, Russia. Mineralogy and Petrology, 74, 124.Google Scholar
Korobeynikov, A. N. and Laaioki, K (1994) Petrological aspects of the evolution of clinopyroxene composition in the intrusive rocks of the Lovozero alkaline massif. Geochemistry International, 31, 6976.Google Scholar
Korzhinsky, D. S. (1959) Acid-basic interaction of the components in silicate melts and the direction of the cotectic lines. Doklady of the Academy of Sciences of the USSR. Earth Science Sections, 128, 821823.Google Scholar
Kramm, U. and Kogarko, L. N. (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola alkaline province, Russia. Lithos, 32, 225242.CrossRefGoogle Scholar
Larsen, L. M. (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilimaussaq intrusion, South Greenland. Journal of Petrology, 17, 258290.CrossRefGoogle Scholar
Mandarino, J. A. (1999) Fleischer's Glossary of Mineral Species (8th edition). Mineralogical Record, Tucson, Arizona, USA, 225 pp.Google Scholar
Markl, G., Marks, M., Schwinn, G. and Sommer, H. (2001) Phase equilibrium constraints on intensive crystallization parameters of the Ilimaussaq Complex, South Greenland. Journal of Petrology, 42, 22312258.CrossRefGoogle Scholar
Marks, M. and Markl, G. (2001) Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilimaussaq Intrusion, South Greenland, as deduced from phase equilibria. Journal of Petrology, 42, 19471969.CrossRefGoogle Scholar
Mitchell, R. H. and Platt, R. G. (1978) Mafic mineralogy of ferroaugite syenite from the Coldwell alkaline complex, Ontario, Canada. Journal of Petrology, 19, 627651.CrossRefGoogle Scholar
Naslund, H. R. and McBirney, A. R. (1996) Mechanisms of formation of igneous layering. Pp. 1-43 in: Layered Intrusions (Cawthorn, R. G., editor). Developments in Petrology, 15. Elsevier, Amsterdam.Google Scholar
Njonfang, E. and Moreau, C. (2000) The mafic mineralogy of the Pande Massif, Tikar Plain, Cameroon. Mineralogical Magazine, 64, 525537.CrossRefGoogle Scholar
Platt, R. G. and Woolley, A. R. (1986) The mafic mineralogy of the peralkaline syenites and granites of the Mulanje complex, Malawi. Mineralogical Magazine, 50, 8599.CrossRefGoogle Scholar
Ryabchikov, I. D. and Kogarko, L. N. (1994) Redox equilibria in alkaline lavas from Trindade Island, Brasil. International Geology Review, 36, 173183.CrossRefGoogle Scholar
Ryabchikov, D. and Kogarko, L. N. (2006) Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos, in press.CrossRefGoogle Scholar
Ryabchikov, I. D., Solovova, I. P., Kogarko, L. N., Bray, G. P., Ntaflos, Th. and Simakin, S. G. (2002) Evidence for melt inclusions. Geochemistry International, 40, 10311041.Google Scholar
Sobolev, A. V., Kamenetskaya, V. S. and Kononkova, N. N., (1991) New data on petrology of Siberian meimechites. Geochemistry International, 8, 10841095.Google Scholar
Sood, M. K. and Edgar, A. B. (1970) Melting relations of undersaturated alkaline rocks from the IUimaussaq intrusion and Gronnedal-Ika complex South Greenland, under water vapour and controlled partial oxygen pressure. Meddelelser om Grønland, 181(12), 1–41.Google Scholar
Sparks, R. S. J., Huppert, H. E., Koyaguchi, T. and Hallworth, M. A. (1993) Origin of modal and rhythmic igneous layering by sedimentation in a convecting magma chamber. Nature, London, 361, 246249.CrossRefGoogle Scholar
Stephenson, D. (1972) Alkali clinopyroxenes from nepheline syenites of the South Qoroq Centre, South Greenland. Lithos, 5, 187201.CrossRefGoogle Scholar
Tyler, R. C. and King, B. C. (1967) The pyroxenes of the alkaline igneous complexes of Eastern Uganda. Mineralogical Magazine, 36, 522.CrossRefGoogle Scholar
Varet, J. (1969) Les pyroxenes des phonolites du Cantal (Auvergne, France). Neues Jahrbuch für Mineralogie Monatshefte, 4, 174–84.Google Scholar
Vlasov, K. A., Kuz'menko, M. Z. and Es'kova, E. M. (1966) The Lovozero Alkali Massif. Oliver and Boyd, Edinburgh, 627 pp. (first published in 1959 by Akademii Nauk SSSR, Moscow).Google Scholar
Wilson, J. R. and Sorensen, H. S. (1996) The Fongen-Hyllingen layered instrusive complex, Norway. Pp. 303329 in: Layered Intrusions (Cawthorn, R. G., editor). Developments in Petrology, 15. Elsevier, Amsterdam.CrossRefGoogle Scholar
Yagi, K. (1953) Petrochemical studies of the alkalic rocks of the Morotu district, Sakhalin. Geological Society of America Bulletin, 64, 769810.CrossRefGoogle Scholar