Skip to main content Accessibility help

Cationic ordering in oxide glasses: the example of transition elements

  • L. Galoisy (a1), L. Cormier (a1), S. Rossano (a1), A. Ramos (a1), G. Calas (a1), P. Gaskell (a2) and M. Le Grand (a1)...


Structural data have been obtained on the cation surroundings in multi-component silicate and borosilicate glasses using chemically selective spectroscopic and scattering methods, such as extended X-ray absorption and neutron scattering with isotope substitution (NSIS). Transition elements such as Ni or Ti may occur in unusual 5-coordinated sites which coexist with other coordination numbers, depending on glass composition. Distribution of cationic sites in the glassy structure is responsible for unusual spectroscopic properties, as shown by Fe2+ Mössbauer spectroscopy. The environment of cations such as Zn, Zr or Mo, has been determined by EXAFS and discussed using the bond valence theory, which predicts the way to charge compensate the oxygen neighbours and which indicates the linkage of cationic sites with the silicate framework. Cation-cation correlations are given by NSIS up to ∼8 Á, indicating an extensive Medium Range Ordering (MRO) with corner- and edge-linked cationic polyhedra, for Ti and Ni-bearing glasses, respectively. This heterogeneous cationic distribution in glasses is consistent with the presence of two-dimensional domains in which cation mixing may occur, as shown in a Ca-Ni metasilicate glass. Three-dimensional domains have also been found by Ni-K edge EXAFS in the case of low alkali borate glasses, with a local structure which mimics some aspects of crystalline NiO. The presence of ordered cationic domains, clearly illustrated by Reverse Monte Carlo simulations helps to rationalize the physical properties of multi-component silicate glasses.


Corresponding author


Hide All
Abramo, M.C., Pizzimenti, G. and Consolo, A. (1991) Microscopic structure of doped borate glasses from molecular dynamics simulations. Phil. Mag. B, 64, 495508.
Angell, C.A. (1988) Perspective on the glass transition. J. Phys. Chem. Solids, 49, 863–71.
Balan, E., Allard, T., Boizot, B., Morin, G. and Muller, J.P. (1999) Structural Fe(III) in natural kaolinite: new insights from EPR spectra fitting at the X and Q band frequencies. Clays Clay Miner., 47, 605–16.
Berkes, J.S. and White, W.B. (1968) Optical spectra of nickel in alkali tetraborate glasses. Phys. Chem. Glasses, 3, 189–202.
Börjesson, L., Torell, L.M., Dahlborg, U. and Howells, W.S. (1989) Evidence of anomalous intermediaterange ordering in superionic borate glasses from neutron diffraction. Phys. Rev. B, 39, 3404–7.
Brese, N.E. and O'Keeffe, M. (1991) Bondvalence parameters in solids. Acta Cryst. B, 47, 192–7.
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals, II, (O'Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.
Brown, G.E. Jr.,, Farges, F. and Calas, G. (1995) X-ray scattering spectroscopic studies of silicate melts. Pp. 317410 in: Structure Dynamics and Properties of Silicate Melts (Stebbins, J.F., McMillan, P.F., and D.B. Dingwell, , editors). Reviews in Mineralogy, 32, Mineralogical Society of America, Washington, D.C.
Bruni, S., Cariati, F., Corrias, A., Gaskell, P.H., Lai, A., Musinu, A. and Piccaluga, G.(1995) Short range order of sodium-zinc, sodium-copper and sodiumnickel pyrophosphate glasses by diffractometric and spectroscopic techniques. J. Phys. Chem., 99, 15229–35.
Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory (2nd Edition). Cambridge University Press, Cambridge.
Burns, R.G. (1994) Mineral Mössbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters. Hyperfine Interactions, 91, 739–45.
Calas, G., Brown, G.E. Jr.,, Farges, F., Galoisy, L., Itié, J.P. and Polian, A. (1995) Cations in glasses under ambient and non-ambient conditions. Nuclear Inst. Methods Phys. B,97, 155–61.
Cormier, L., Creux, S., Galoisy, L., Calas, G. and Gaskell, P.H. (1996) Medium range order around cations in silicate glasses. Chem. Geol., 128, 77–91.
Cormier, L., Calas, G. and Gaskell, P.H. (1997) A reverse Monte Carlo study of a titanosilicate glass. J. Phys. Cond. Matter, 9, 10129–36.
Cormier, L., Gaskell, P.H., Calas, G. and Soper, A.K. (1998) Medium range order around titanium in silicate glass studied by neutron diffraction with isotopic substitution. Phys. Rev. B, 58, 11322–30.
Cormier, L., Galoisy, L. and Calas, G. (1999) Evidence of ordered domains in alkali borate glasses containing nickel. Europhys. Lett., 45, 572–8.
Dumas, T., Ramos, A., Gandais, M. and Petiau, J. (1985) Role of zirconium in nucleation and crystallization of a(SiO2, Al2O3, MgO, ZnO) glass. Mat. Sci. Lett., 4, 129–32.
Dumas, T. and Petiau, J. (1986) EXAFS study of titanium and zinc environments during nucleation in a cordierite glass. J. Non-Cryst. Solids, 81, 201–20.
Farges, F. and Brown, G.E. Jr., (1996) An empirical model for the anharmonic analysis of hightemperature XAFS spectra of oxide compounds with applications to the coordination environment of Ni in NiO, γ-Ni2SiO4 and Ni-bearing Na-disilicate glass and melt. Chem. Geol., 128, 93106.
Farges, F., Ponader, C.W. and Brown, G.E. Jr., (1991) Structural environments of incompatible elements in silicate glass/melt systems: I. Zirconium at trace levels. Geochim. Cosmochim. Acta, 55, 1563–74.
Farges, F., Brown, G.E. Jr.,, Navrotsky, A. Gan, H. and Rehr, J.J. (1996) Coordination chemistry of Ti(IV) in silicate glasses and melts. III. Glasses and melts from ambient to high temperatures. Geochim. Cosmochim. Acta, 60, 3055–65.
Galoisy, L. (1991) Etudes spectroscopiques de l'environnement du nickel dans les verres. Thèse de doctorat, Paris VII University, France.
Galoisy, L. and Calas, G. (1991) Spectroscopic evidence for five-coordinated Ni in CaNiSi2O6 glass. Amer. Mineral., 76, 1777–80.
Galoisy, L. and Calas, G. (1992) Network-forming Ni in silicate glasses, Amer. Mineral., 77, 677–80.
Galoisy, L. and Calas, G. (1993 a) Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states. Geochim. Cosmochim. Acta, 57, 3613–26.
Galoisy, L. and Calas, G. (1993 b) Structural environment of nickel in silicate glass/melt systems: Part II. Geochemical implications. Geochim. Cosmochim. Acta, 57, 3627–33.
Galoisy, L., Delaye, J.M., Ghaleb, D., Calas, G., Le Grand, M., Morin, G., Ramos, A. and Pacaud, F. (1998) Local structure of simplified waste glass: complementarity of XAS and MD calculations. Scientific basis for Nuclear Waste Management, 21, 133–9.
Galoisy, L., Pélegrin, E., Arrio, M.A., Ildefonse, Ph. and Calas, G. (1999) Evidence for 6-coordinate d zirconium in inactive nuclear waste glasses. J. Amer. Ceram. Soc., 82, 2219–24.
Gaskell, P.H. (1991) The structure of silicate glasses and crystals – Towards a convergence of views, Trans. Amer. Cryst. Assoc., 27, 95112.
Gaskell, P.H. (1993) Neutron contrast techniques applied to oxide glasses. Pp. 3445 in: Methods in Determination of Partial Structure Factors of Disordered Matter by Neutron and Anomalous X-ray Diffraction (Suck, J.B., Chieux, P., Raoux, D. and Rielke, C., editors). World Scientific, Singapore.
Gaskell, P.H., Eckersley, M.C., Barnes, A.C. and Chieux, P. (1991) Medium-range order in the cation distribution of a calcium silicate glass. Nature, 350, 675–7.
Gaskell, P.H., Zhao, J., Calas, G. and Galoisy, L. (1992) The structure of mixed cation oxide glasses. Pp. 53–8 in: The Physics of Non-Crystalline Solids (Pye, L.D., La Course, W.C. and Stevens, H.J., editors). Taylor & Francis, London.
Greaves, G.N. (1985) EXAFS and the structure of glass. J. Non-Cryst. Solids, 71, 203–17.
Greaves, G.N. (1989) EXAFS, glass structure and diffusion. Phil. Mag. B, 60, 793–800.
Greaves, G.N. and Ngai, K.L. (1995) Reconciling ionicproperties with atomic structure in oxide glasses. Phys. Rev. B., 52, 6358–79.
Hanson, C.D. and Egami, T. (1986) Distribution of Cs+ ions in single and mixed alkali silicate glasses from energy dispersive X-ray diffraction. J. Non-Cryst. Solids, 87, 171–84.
Hawthorne, F.C. (1988) Mössbauer spectroscopy. Pp. 255340 in: Spectroscopic Methods in Mineralogy and Geology (Hawthorne, F.C., editor). Reviews in Mineralogy, 18. Mineralogical Society of America, Washington, D.C.
Ingram, M.D. (1989) Ionic conductivity and glass structure. Phil. Mag. B, 60, 729–40.
Keppler, H. (1992) Crystal field spectra and geochemistry of transition metals ions in silicate melts and glasses. Amer. Mineral., 77, 6275.
Keppler, H. and Rubie, D.C. (1993) Pressure induced coordination changes of transition metal ions in silcate melts. Nature, 364, 54–6.
Levitz, P., Bonnin, D., Calas, G. and Legrand, A.P. (1980) A two-parameter distribution analysis of Mössbauer spectra in non-crystalline solids using general inversion method. J. Phys. E: Sci. Instrum., 13, 427–32.
McGreevy, R.L. (1995) RMC – Progress, problems and prospects. Nucl. Inst. Meth. Phys. Res. A, 354, 116.
Miglierini, M. (1989) Justification of various fitting problems for the Mössbauer spectrum analysis of metallic glasses. Nucl. Inst. Meth. Phys. Res. B, 36, 475–84.
Musinu, A. and Picaluga, G. (1994) X-ray diffraction studies of multicomponent oxide glasses. J. Non Cryst. Solids, 177, 8190.
Nishida, T. (1994) Advances in the Mössbauer effect for the structural study of glasses. J. Non Cryst. Solids, 117, 257–68.
Paul, A. (1975) Activity of nickel oxide in alkali borate melts. J. Mater. Sci., 10, 422–6.
Paul, A. and Douglas, R.W. (1967) Co-ordination equilibria of nickel (II) in alkali borate glasses. Phys. Chem. Glasses, 8, 233–37.
Pauling, L. (1960) The Nature of the Chemical Bond (3rd edition). Cornell.
Pickering, I.J., George, G.N., Lewandowski, J.T. and Jacobson, A.J. (1993) Nickel K-edge X-ray absorption fine structure of lithium nickel oxides. J. Amer. Chem. Soc., 115, 4137–44.
Raj, P. (1989) Correlations among hyperfine parameters in amorphous metal systems: Mössbauer linewidth asymmetries and fluctuation hyperfine correlation functions. Hyperfine Interactions, 52, 373–8.
Rehr, J.J.,Mustre de Leon, J., Zabinski, S.I. and Albers, R.C. (1991) Theoretical X-ray absorption fine structure standards. J. Amer. Chem. Soc., 113, 5135–40.
Rossano, S., Balan, E., Morin, G., Bauer, J.-P., Calas, G. and Brouder, C. (1999) 57Fe Mössbauer spectroscopy of tektites. Phys. Chem. Min., 26, 530–8.
Rossano, S., Ramos, A., Delaye, J.M., Creux, S., Filipponi, A., Brouder, C. and Calas, G. (2000) EXAFS and molecular dynamics combined study of CaO-FeO-2SiO2 glass. New insight into site significance in silicate glasses. Europhys. Lett., 49, 597–602.
Rousselot, C. , Malugani, J.P. Mercier, R. Tachez, M. Chieux, P. Pappin, A.J. and Ingram, M.D (1995) The origins of neutron scattering prepeaks and conductivity enhancement in AgI-containing glasses. Sol. St. Ion., 78, 211–21.
Vandenberghe, R.E., de Grave, E. and de Bakker, P.M.A. (1994) On the methodology of the analysis of Mössbauer spectra. Hyperfine Interactions, 83, 29–49.
Watson, E.B. (1979) Zircon saturation in felsic liquids: experimental results and application to trace elements geochemistry. Contrib. Mineral. Petrol., 70, 407–19.
Wong, J. and Angell, C.A. (1976) Glass Structure by Spectroscopy. M. Dekker Inc., New York.
Xu, Q., Maekawa, T., Kawamura, K. and Yokokawa, T. (1990) Local structure around Ni2+ ions in sodium borate glasses. Phys. Chem. Glasses, 31, 151–5.
Yarker, C.A., Johnson, P.A.V., Wright, A.C., Wong, J., Greegor, R.B., Lytle, F.W. and Sinclair, R.N. (1986) Neutron diffraction and EXAFS evidence for TiO5 units in vitreous K2O.TiO22SiO2 , J. Non-Cryst. Solids, 76, 117–36.
Yasui, I., Hasegawa, H., Saito, Y. and Akasaka, Y. (1990) Structure of borate glasses containing heavy metal ions. J. Non-Cryst. Solids, 123, 71–4.


Cationic ordering in oxide glasses: the example of transition elements

  • L. Galoisy (a1), L. Cormier (a1), S. Rossano (a1), A. Ramos (a1), G. Calas (a1), P. Gaskell (a2) and M. Le Grand (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed