Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T05:58:47.363Z Has data issue: false hasContentIssue false

Canutite, NaMn3[AsO4][AsO3(OH)]2, a new protonated alluaudite-group mineral from the Torrecillas mine, Iquique Province, Chile

Published online by Cambridge University Press:  05 July 2018

A. R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
S. J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
F. Hatert
Affiliation:
Université de Liège, Laboratoire de Minéralogie, B18, B-4000 Liège, Belgium
B. P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
M. Dini
Affiliation:
Pasaje San Agustin 4045, La Serena, Chile
A. A. Molina Donoso
Affiliation:
Los Algarrobos 2986, Iquique, Chile
*
* E-mail: akampf@nhm.org

Abstract

The new mineral canutite (IMA2013-070), NaMn3[AsO4][AsO3(OH)]2, was found at two different locations at the Torrecillas mine, Salar Grande, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, halite, lavendulan, magnesiokoritnigite, pyrite, quartz and scorodite. Canutite is reddish brown in colour. It forms as prisms elongated on [20] and exhibiting the forms {010}, {100}, {10}, {201} and {102}, or as tablets flattened on {102} and exhibiting the forms {102} and {110}. Crystals are transparent with a vitreous lustre. The mineral has a pale tan streak, Mohs hardness of 2½, brittle tenacity, splintery fracture and two perfect cleavages, on {010} and {101}. The calculated density is 4.112 g cm−3. Optically, canutite is biaxial (+) with α = 1.712(3), β = 1.725(3) and γ = 1.756(3) (measured in white light). The measured 2V is 65.6(4)°, the dispersion is r < v (slight), the optical orientation is Z = b; X ^ a = 18° in obtuse β and pleochroism is imperceptible. The mineral is slowly soluble in cold, dilute HCl. The empirical formula (for tabular crystals from near the mineshaft), determined from electron - microprobe analyses, is (Na1.05Mn2.64Mg0.34Cu0.14Co0.03)∑4.20As3O12H1.62. Canutite is monoclinic, C2/c, a = 12.3282(4), b = 12.6039(5), c = 6.8814(5) Å, β = 113.480(8)°, V = 980.72(10) Å3 and Z = 4. The eight strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 6.33(34)(020), 4.12(26)(21), 3.608(29)(310,31), 3.296(57)(12), 3.150(28)(002,131), 2.819(42)(400,041,330), 2.740(100)(240,02,112) and 1.5364(31)(multiple). The structure, refined to R1 = 2.33% for 1089 Fo > 4σF reflections, shows canutite to be isostructural with protonated members of the alluaudite group.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381388.CrossRefGoogle Scholar
Cameron, E.M., Leybourne, M.I. and Palacios, C. (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205218.CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C., Ball, N.A., Ramik, R.A. and Roberts, A.C. (2009) Groatite, NaCaMn2+ 2(PO4)[PO3(OH)]2, a new mineral species of the alluaudite group from the Tanco pegmatite, Bernic Lake, Manitoba, Canada: description and crystal structure. The Canadian Mineralogist, 47, 12251235.CrossRefGoogle Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Gutiérrez, H. (1975) Informe sobre una rápida visita a la mina de arsénico nativo, Torrecillas. Instituto de Investigaciones Geológicas, Iquique, Chile.Google Scholar
Hatert, F. (2006) Na1.50Mn2.48Al0.85(PO4)3, a new synthetic alluaudite-type compound. Acta Crystallographica, C62, i1–i2.CrossRefGoogle Scholar
Hatert, F. (2008) The crystal chemistry of the divalent cation in alluaudite-type phosphates: a structural and infrared spectral study of the Na1.5(Mn1–xM2+ x)1.5Fe1.5(PO4)3 solid solutions (x = 0 to 1, M2+ = Cd2+, Zn2+). Journal of Solid State Chemistry, 181, 12581272.CrossRefGoogle Scholar
Hatert, F., Keller, P., Lissner, F., Antenucci, D. and Fransolet, A.-M. (2000) First experimental evidence of alluaudite-like phosphates with high Li-content: the (Na1–xLix)MnFe2(PO4)3 series (x = 0 to 1). European Journal of Mineralogy, 12, 847857.CrossRefGoogle Scholar
Hatert, F., Hermann, R.P., Long, G.J., Fransolet, A.-M. and Grandjean, F. (2003) An X-ray Rietveld, infrared, and Mössbauer spectral study of the NaMn(Fe1–xInx)2(PO4)3 alluaudite-like solid solution. American Mineralogist, 88, 211222.CrossRefGoogle Scholar
Hatert, F., Rebbouh, L., Hermann, R.P., Fransolet, A.-M., Long, G.J. and Grandjean, F. (2005) Crystal chemistry of the hydrothermally synthesized Na2(Mn1–xFe2+ x)2Fe3+(PO4)3 alluaudite-type solid solution. American Mineralogist, 90, 653662.CrossRefGoogle Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2013a) Magnesiokoritnigite, Mg(AsO3OH)·H2O, from the Torrecillas mine, Iquique Province, Chile: the Mg-analogue of koritnigite. Mineralogical Magazine, 77, 30813092.CrossRefGoogle Scholar
Kampf, A.R., Sciberras, M.J., Williams, P.A. and Dini, M. (2013b) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co-analogue of herbertsmithite. Mineralogical Magazine, 77, 30473054.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2014) Torrecillasite, Na(As,Sb)3+ 4O6Cl, a new mineral from the Torrecillas mine, Iquique Province, Chile: description and crystal structure. Mineralogical Magazine, 78, 747755.CrossRefGoogle Scholar
Keller, P. and Hess, H. (1988) Die kristallstrukturen von O’Danielit, Na(Zn,Mg)3H2(AsO4)3, und Johillerit, Na(Mg,Zn)3Cu(AsO4)3. Neues Jahrbuch für Mineralogie, Monatshefte, 1988, 395404.Google Scholar
Krivovichev, S.V., Vergasova, L.P., Filatov, S.K., Rybin, D.S., Britvin, S.N. and Ananiev, V.V. (2013) Hatertite, Na2(Ca,Na)(Fe3+,Cu)2(AsO4)3, a new alluaudite-group mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia. European Journal of Mineralogy, 25, 683691.CrossRefGoogle Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model "PAP". Pp. 31–75 in: Electron Probe Quantitation (K.F.J. Heinrich and D.E. Newbury (editors). Plenum Press, New York.Google Scholar
Rondeux, M. and Hatert, F. (2010) An X-ray Rietveld and infrared spectral study of the Na2(Mn1–xM2+ x)Fe2+Fe3+(PO4)3 (x = 0 to 1, M2+ = Mg, Cd) alluaudite-type solid solutions. American Mineralogist, 95, 844852.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Tait, K.T. and Hawthorne, F.C. (2003) Refinement of the crystal structure of arseniopleite: confirmation of its status as a valid species. The Canadian Mineralogist, 41, 7177.CrossRefGoogle Scholar
Wright, S.E., Foley, J.A. and Hughes, J.M. (2001) Optimization of site occupancies in minerals using quadratic programming. American Mineralogist, 85, 524531.CrossRefGoogle Scholar