Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T01:10:59.668Z Has data issue: false hasContentIssue false

Bond-valence constraints around the O1 site of tourmaline

Published online by Cambridge University Press:  05 July 2018

F. Bosi*
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Universita` di Roma, P. le A. Moro, 5, I-00185 Rome, Italy

Abstract

The stabilities of possible Y(R3+ + R2+ + Li+) clusters around the W anion (O1 site) of the tourmaline structure were checked using the bond-valence approach. Arrangements involving R3+ = Al3+ or Fe3+ and R2+ = (Fe, Mn, Mg)2+ were all found to be stable. Structural data show a strong linear correlation between the mean formal valence (MFV) of the Y cations and the long-range average bond valence sum (BVS) at the O1 site, as estimated from bond-valence parameters. This correlation is observed for all chemical compositions of tourmaline, except for fluor-buergerite where the O3 site is dominated by oxygen anions. Results show that the long-range site populations of the Y and O1 sites are related to each other by valence constraints described by the empirical and theoretical equations: BVS(O1) = [0.99 MFV(Y) − 1.20] and MFV(O1) = [1.00 MFV(Y) − 1.00], respectively. The systematic deviation of the empirical equation from the ideal one is ascribed to the occurrence of bond strain involving the O1 site. An important implication of the correlation between MFV(Y) and BVS(O1) is that the (OH) content at the O1 site may be estimated by the equation W(OH) = 2 − [1.01 BVS(O1)] − 0.21 − F.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrosı`, G., Bosi, F., Lucchesi, S., Melchiorre, G. and Scandale, E. (2006) Mn-tourmaline crystals from island of Elba (Italy): Growth history and growth marks. American Mineralogist, 91, 944952.CrossRefGoogle Scholar
Andreozzi, G.B., Ottolini, L., Lucchesi, S., Graziani, G. and Russo, U. (2000) Crystal chemistry of the axinite-group minerals: A multi-analytical approach. American Mineralogist, 85, 698706.CrossRefGoogle Scholar
Andreozzi, G.B., Bosi, F. and Longo, M. (2008) Linking Mössbauer and structural parameters in elbaiteschorl- dravite tourmalines. American Mineralogist, 93, 658666.CrossRefGoogle Scholar
Bosi, F. (2008) Disordering of Fe2+ over octahedrally coordinated sites of tourmaline. American Mineralogist, 93, 16471653.CrossRefGoogle Scholar
Bosi, F. (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineralogical Magazine, 74, 10371044.CrossRefGoogle Scholar
Bosi, F. (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. The Canadian Mineralogist, 49, 1727.CrossRefGoogle Scholar
Bosi, F. and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. American Mineralogist, 92, 10541063.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Federico, M., Graziani, G. and Lucchesi, S. (2005) Crystal chemistry of the elbaite-schorl series. American Mineralogist, 90, 17841792.CrossRefGoogle Scholar
Bosi, F., Balić-Žunić, T. and Surour, A.A. (2010) Crystal structure analysis of four tourmalines from the Cleopatra’s Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in the tourmaline group. American Mineralogist, 95, 510518.CrossRefGoogle Scholar
Bosi, F., Skogby, H., Agrosı`, G. and Scandale, E. (2012a ) Tsilaisite , NaMn3Al6 (Si6O18) (BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Piero in Campo, island of Elba, Italy. American Mineralogist, 97, 989994.CrossRefGoogle Scholar
Bosi, F., Reznitskii, L. and Skogby, H. (2012b) Oxychromium- dravite, NaCr3(Cr4Mg2)(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 97, 20242030.CrossRefGoogle Scholar
Bosi, F., Reznitskii, L. and Sklyarov, E.V. (2013a) Oxyvanadium- dravite, NaV3(V4Mg2) (Si6O18) (BO3)3(OH)3O: crystal structure and redefinition of the “vanadium-dravite” tourmaline. American Mineralogist, 98, 501505.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Skogby, H., Lussier, A.J., Abdu, Y. and Hawthorne, F.C. (2013b) Fluor-elbaite, Na(Li1.5Al1.5)Al6(Si6O18) (BO3)3(OH)3F, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 297303.CrossRefGoogle Scholar
Brese, N.E. and O.Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. (1976) Hydrogen bonding in perchloric acid hydrates. Acta Crystallographica, A32, 786792.CrossRefGoogle Scholar
Brown, I.D. (2002) The chemical bond in inorganic chemistry: the bond valence model. Series: International Union of Crystallography Monographs on Crystallography, 12, Oxford University Press, UK, 288 pp.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Burns, P.C., MacDonald, D.J. and Hawthorne, F.C. (1994) The crystal-chemistry of manganese-bearing elbaite. The Canadian Mineralogist, 32, 3141.Google Scholar
Filip, J., Bosi, F., Novák, M., Skogby, H., Tucˇek, J., Čuda, J. and Wildner, M. (2012) Redox processes of iron in the tourmaline structure: example of the hightemperature treatment of Fe3+-rich schorl. Geochimica et Cosmochimica Acta, 86, 239256.CrossRefGoogle Scholar
Foit, F.F. Jr. (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. American Mineralogist, 74, 422431.Google Scholar
Grice, J.D. and Ercit, T.S. (1993) Ordering of Fe and Mg in the tourmaline crystal structure: The correct formula. Neues Jahrbuch für Mineralogie Abhandlungen, 165, 245266.Google Scholar
Hawthorne, F.C. (1996) Structural mechanisms for lightelement variations in tourmaline. The Canadian Mineralogist, 34, 123132.Google Scholar
Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourmaline. The Canadian Mineralogist, 40, 789797.CrossRefGoogle Scholar
Hawthorne, F.C. and Henry, D. (1999) Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201215.CrossRefGoogle Scholar
Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B., Uher, P. and Pezzotta, F. (2011) Nomenclature of the tourmaline supergroup minerals. American Mineralogist, 96, 895913.CrossRefGoogle Scholar
Lussier, A.J., Aguiar, P.M., Michaelis, V.K., Kroeker, S., Herwig, S., Abdu, Y. and Hawthorne, F.C. (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer spectroscopy. Mineralogical Magazine, 72, 747761.CrossRefGoogle Scholar
Lussier, A.J., Hawthorne, F.C., Aguiar, P.M., Michaelis, V.K. and Kroeker, S. (2011a) Elbaite-liddicoatite from Black Rapids glacier, Alaska. Periodico di Mineralogia, 80, 5773.Google Scholar
Lussier, A.J., Abdu, Y. Hawthorne, F.C., Michaelis, V.K., Aguiar, P.M. and Kroeker, S. (2011b) Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. The Canadian Mineralogist, 49, 6388.CrossRefGoogle Scholar
Novák, M., Povondra, P. and Selway, J.B. (2004) Schorl-oxy-schorl to dravite-oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. European Journal of Mineralogy, 16, 323333.CrossRefGoogle Scholar
Novák, M., Sˇ koda, P., Filip, J., Macek, I. and Vaculovicˇ, T. (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebícˇ Pluton, Czech Republic; electron microprobe, Mössbauer and LA-ICP-MS study. The Canadian Mineralogist, 49, 359380.CrossRefGoogle Scholar
Skogby, H., Bosi, F. and Lazor, P. (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Physics and Chemistry of Minerals, 39, 811816.CrossRefGoogle Scholar
Taylor, M.C., Cooper, M.A. and Hawthorne, F.C. (1995) Local charge-compensation in hydroxy-deficient uvite. The Canadian Mineralogist, 33, 12151221.Google Scholar
van Hinsberg, V.J., Henry, D.J. and Marschall, H.R. (2011) Tourmaline: an ideal indicator of its host environment. The Canadian Mineralogist, 49, 116.CrossRefGoogle Scholar