Skip to main content Accessibility help
×
Home

Bassoite, SrV3O7·4H2O, a new mineral from Molinello mine, Val Graveglia, eastern Liguria, Italy

  • L. Bindi (a1) (a2), C. Carbone (a3), R. Cabella (a3) and G. Lucchetti (a3)

Abstract

Bassoite, ideally SrV3O7·4H2O, is a new mineral from the Molinello manganese mine, Val Graveglia. eastern Liguria, northern Apennines, Italy. It occurs as black euhedral to subhedral grains up to 400 urn across, closely associated with rhodonite, quartz and braunite. Bassoite is opaque with a sub-metallic lustre and a black streak. It is brittle and neither fracture nor cleavage was observed; the Vickers micro-hardness (VHN100) is 150 kg/mm (range 142—165; corresponding to a Mohs hardness of 4—41/2). The calculated density is 2.940 g/cm3 (on the basis of the empirical formula and X-ray single-crystal data). Bassoite is weakly bireflectant and very weakly pleochroic from grey to a dark green. Internal reflections are absent. The mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 18.5%, 19.0% (471.1 nm); 17.2%, 17.8% (548.3 nm); 16.8%, 17.5% (586.6 nm) and 16.2%, 16.8% (652.3 nm), respectively.

Bassoite is monoclinic, space group P21/m, with unit-cell parameters: a = 5.313(3) Å, b = 10.495(3) Å, c = 8.568(4) Å, β = 91.14(5)°, V= 477.7(4) Å3, a:b:c = 0.506:1:0.816, and Z = 2. The crystal structure was refined to R1 = 0.0209 for 1148 reflections with Fo > 4σ(Fo) and it consists of layers of VO5 pyramids (with vanadium in the tetravalent state) pointing up and down alternately with Sr between the layers (in nine-fold coordination). The nine most intense X-ray powder-diffraction lines [d in Å (I/I0) (hkt)] are: 8.5663 (100) (001); 6.6363 (14) (011); 3.4399 (14) (1̄21); 3.4049 (17) (121); 2.8339 (15) (1̄22); 2.7949 (11) (122); 2.6550 (15) (200); 2.6237 (11) (040) and 1.8666 (15) (240). Electron microprobe analyses produce a chemical formula (Sr0.97Ca0.02Na0.01)V3.00O74H20, on the basis of 2(Sr+Ca+Na) = 1, taking the results of the structure refinement into account. The presence of water molecules was confirmed by micro-Raman spectroscopy. The name honours Riccardo Basso (b. 1947), full professor of Mineralogy and Crystallography at the University of Genova. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA (2011-028).

Copyright

Corresponding author

References

Hide All
Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (1994) Vanadomalayaite, CaVOSiO4, a new mineral vanadium analog of titanite and malayaite. Neues Jahrbuch für Mineralogie Monatshefte, 498–.
Basso, R., Lucchetti, G., Martinelli, A. and Palenzona, A. (2003) Cavoite, CaV3O7, a new mineralfrom the Gambatesa mine, northern Apennines, Italy. European Journal of Mineralogy, 15, 181–184.
Basso, R., Cabella, R., Lucchetti, G., Martinelli, A. and Palenzona, A. (2005) Vanadiocarpholite, Mn2+V3+Al(Si2O6)(OH)4, a new mineralfrom the Molinello mine, northern Apennines, Italy. European Journal of Mineralogy, 17, 501–507.
Bouloux, J.-C. and Galy, J. (1973) Les hypovanadates MV3O7 (M = Ca, Sr, Cd). Structure cristalline de CaV3O7 . Acta Crystallographica, B29, 269–275.
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 197–.
Cabella, R., Lucchetti, G. and Marescotti, P. (1998) Mnores from Eastern Ligurian ophiolitic sequences (“Diaspri di Monte Alpe” Formation, Northern Apennines, Italy). Trends in Mineralogy, 2, 1–17.
Cortesogno, L., Lucchetti, G. and Penco, A.M. (1979) Le mineralizzazioni a manganese nei diaspri delle ofioliti liguri: mineralogia e genesi. Rendiconti S.I.M.P. (Società Italiana di Mineralogia e Petrologia), 35, 151–197.
Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B., Jr. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 1104–1107.
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, volume 4. Kynock Press, Birmingham, UK, 366 pp.
Lucchetti, G., Cabella, R. and Cortesogno, L. (1990) Pumpellyite and coexisting minerals in different low grade metamorphic facies of Liguria, Italy. Journal of Metamorphic Geology, 8, 539–550.
Marchesini, M. and Pagano, R. (2001) The Val Graveglia manganese district, Liguria, Italy. The Mineralogical Record, 32, 349–379.
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, UK.
Prinz, S., Sparta, K.M. and Roth, G. (2007) Temperature dependence of the AV3O7 (A = Ca, Sr) structure. Acta Crystallographica, B63, 842–.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 122–.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Bindi et al. supplementary material
Structure factors

 Unknown (58 KB)
58 KB
UNKNOWN
Supplementary materials

Bindi et al. supplementary material
CIF

 Unknown (4 KB)
4 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed