Skip to main content Accessibility help

As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: III. Canosioite, Ba2Fe3+(AsO4)2(OH), description and crystal structure

  • F. Cámara (a1) (a2), E. Bittarello (a1) (a2), M. E. Ciriotti (a3), F. Nestola (a4), F. Radica (a5), F. Massimi (a6), C. Balestra (a7) and R. Bracco (a8)...


The new mineral species canosioite, ideally Ba2Fe3+(AsO4)2(OH), has been discovered in the dump of Valletta mine, Maira Valley, Cuneo Province, Piedmont, Italy. Its origin is probably related to the reaction between ore minerals and hydrothermal fluids. It occurs in reddish-brown granules, subhedral millimetre-size crystals, with a pale yellow streak and vitreous lustre. Canosioite is associated with aegirine, baryte, calcite, hematite, bronze Mn-bearing muscovite, unidentified Mn oxides and unidentified arsenates. Canosioite is biaxial (+) with a 2Vmeas = 84(2)°. It is weakly pleochroic with X = brownish yellow, Y = brown, Z = reddish brown, Z > Y > X. Canosioite is monoclinic, P21/m, with a = 7.8642(4), b = 6.1083(3), c = 9.1670(5) Å, β = 112.874(6)°, V = 405.73(4) Å3 and Z = 2. Calculated density is 4.943 g cm–3. The seven strongest diffraction lines of the observed powder X-ray diffraction pattern are [d in Å, (I) (hkl)]: 3.713 (18)(111), 3.304 (100)(211̄), 3.058 (31)(020), 3.047 (59)(103̄), 2.801 (73)(112), 2.337 (24)(220), 2.158 (24)(123̄). Electron microprobe analyses gave (wt.%): Na2O 0.06, MgO 0.43, CaO 0.02, NiO 0.02, CuO 0.03, SrO 0.42, BaO 49.36, PbO 1.69, Al2O3 1.25, Mn2O3 3.89, Fe2O3 6.95, Sb2O3 0.01, SiO2 0.03, P2O5 0.02, V2O5 10.88, As2O5 24.64, SO3 0.01, F 0.02, H2O1.61 was calculated on the basis of 1 (OH,F,H2O) group per formula unit. Infrared spectroscopy confirmed the presence of OH. The empirical formula calculated on the basis of 9 O apfu, is (Ba1.92Pb0.05Sr0.02Na0.01)∑2.00(Fe0.52 3+Mn0.29 3+Al0.15Mg0.06)∑1.02[(As0.64V0.36)∑1.00O4]2[(OH0.92F0.01)(H2O)0.07]and the ideal formula is Ba2Fe3+(AsO4)2(OH). The crystal structure was solved by direct methods and found to be isostructural to that of arsenbrackebuschite. The structure model was refined (R 1 = 2.6%) on the basis of 1245 observed reflections. Canosioite is named after the small municipality of Canosio, where the type locality, the Valletta mine, is situated. The new mineral and name were approved by the International Mineralogical Association Commission on New Minerals and Mineral Names (IMA2015-030).


Corresponding author


Hide All
Abraham, K., Kautz, K., Tillmanns, E. and Walenta, K. (1978) Arsenbrackebuschite, Pb2(Fe,Zn)(OH,H2O) [AsO4]2, a new arsenate mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 193196.
Basso, R., Palenzona, A. andZefiro, L. (1987) Gamagarite: new occurrence and crystal structure refinement. Neues Jahrbuch für Mineralogie, Monatshefte, 295304.
Bideaux, R.A., Nichols, M.C. and Williams, S.A. (1966) The arsenate analog of tsumebite, a new mineral. American Mineralogist, 51, 258259.
Brackebusch, L., Rammelsberg, C., Doering, A. and Websky, M. (1883) Sobre los vanadatos naturales de las provincias de Córdoba y San Luis (República Argentina). Boletín de la Academia Nacional de Ciencias (Córdoba), 5, 439524.
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals II, (M. O'Keeffe and A. Navrotsky, editors). Academic Press, New York.
Brunet, F., Gebert, W., Medenbach, O. and Tillmanns, E. (1993) Bearthite, Ca2Al[PO4]2(OH), a new mineral from high-pressure terranes of the western Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 19.
Brunet, F and Chopin, C. (1995) Bearthite, Ca2Al (PO4)2OH: stability, thermodynamic properties and phase relations. Contributions to Mineralogy and Petrology, 121, 258266.
Busz, K. (1912) Tsumebit, ein neues Mineral von Otavi und Zinnsteinkristalle. Deutschen Naturforscher und Årtze in Münster, 84, 230230.
Cámara, F., Ciriotti, M.E., Bittarello, E., Nestola, F., Bellatreccia, F., Massimi, F., Radica, F., Costa, E., Benna, P. and Piccoli, G.C. (2014) Arsenic-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, Sr2Al(AsO4)2(OH), description and crystal structure. Mineralogical Magazine, 78, 757774.
Cámara, F., Bittarello, E., Ciriotti, M.E., Nestola, F., Radica, F., Marchesini, M. (2015a) As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: II. Braccoite, NaMn25[Si5AsO17(OH)](OH), description and crystal structure. Mineralogical Magazine, 79, 171189.
Cámara, F., Bittarello, E., Ciriotti, M.E., Nestola, F., Radica, F., Massimi, F., Balestra, C. and Bracco, R. (2015b) Canosioite, IMA 2015-030. CNMNC Newsletter No. 26, August 2015, page 945; Mineralogical Magazine, 79, 941947.
Clark, A.M., Criddle, A.J., Roberts, A.C., Bonardi, M. and Moffatt, E.A. (1997) Feinglosite, a new mineral related to brackebuschite, from Tsumeb, Namibia. Mineralogical Magazine, 61, 285289.
de Villiers, J.E. (1943) Gamagarite, a new vanadium mineral from the Postmasburg manganese deposits. American Mineralogist, 28, 329335.
Donaldson, D.M. and Barnes, W.H. (1955) The structures of the minerals of the descloizite group and adelite groups: III — brackenbuschite. American Mineralogist, 40, 597613.
Fanfani, L. andZanazzi, P.F (1967) Structural similarities of some secondary lead minerals. Mineralogical Magazine, 36, 522529.
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London, 539 pp.
Foley, J.A., Hughes, J.M. and Lange, D. (1997) The atomic arrangement of brackebuschite, redefined as Pb2(Mn3+,Fe3+)(VO4)2(OH), and comments on Mn3+octahedra. The Canadian Mineralogist, 35, 10271033.
González del Tánago, J., La Iglesia, Á., Rius, J. and Fernández Santín, S. (2003) Calderónite, a new lead-iron-vanadate of the brackebuschite group. American Mineralogist, 88, 17031708.
Harlow, G.E., Dunn, P.J. and Rossman, G.R. (1984) Gamagarite: a re-examination and comparison with brackebuschite-like minerals. American Mineralogist, 69, 803806.
Hofmeister, W. and Tillmanns, E. (1978) Strukturelle Untersuchungen an Arsenbrackebuschit. Tschermaks Mineralogische und Petrographische Mitteilungen, 25, 153163.
Kampf, A.R., Adams, P.M., Nash, B.P. and Marty, J. (2015) Ferribushmakinite, Pb2Fe3+(PO4)(VO4)(OH), the Fe3+ analogue of bushmakinite from the Silver Coin mine, Valmy, Nevada. Mineralogical Magazine, 79, 661669.
Larson, A.C. and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, 86-748.
Libowitzky, E. (1999) Correlation of OH stretching frequencies and O—H…0 hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.
Matsubara, S., Miyawaki, R., Yokoyama, K., Shimizu, M. and Imai, H. (2004) Tokyoite, Ba2Mn3+(VO4)2(OH), a new mineral from the Shiromaru mine, Okutama, Tokyo, Japan. Journal of Mineralogical and Petrological Sciences, 99, 363367.
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.
Moore, P.B., Irving, A.J. andKampf, A.R. (1975) Foggite, CaAl(OH)2(H2O)[PO4]; goedkinite, (Sr,Ca)2Al(OH) [PO4]2; and samuelsonite (Ca,Ba)Fe22 +Mn22 +Ca8 Al2(OH)2[PO4]10: Three new species from the Palermo No. 1 Pegmatite, North Groton, New Hampshire. American Mineralogist, 60, 957964.
Moura, M.A., Botelho, N.F., Carvalho de Mendonca, E (2007) The indium-rich sulfides and rare arsenates of the mineralized Mangabeira A-type granite, Central Brazil. The Canadian Mineralogist, 45, 485496.
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan, T.J. (1998a) Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions and solids. Geochimica et Cosmochimica Acta, 62, 32853300.
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan, T.J. (1998b): Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochimica et Cosmochimica Acta, 62, 34993514.
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York, 432 pp.
Nichols, M.C. (1966) The structure of tsumebite. American Mineralogist, 51, 267267.
Pekov, I.V (2007) New minerals from former Soviet Union countries, 1998—2006: new minerals approved by the IMA Commission on New Minerals and Mineral Names. Mineralogical Almanac, 11, 951.
Pekov, I.V., Kleimenov, D.A., Chukanov, N.V., Yakubovich, O.V., Massa, W., Belakovskiy, D.I. and, Pautov, L.A. (2002) Bushmakinite Pb2Al(PO4)(VO4) (OH), a new mineral of the brackebuschite group from oxidized zone of Berezovskoye gold deposit, the Middle Urals. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 131(2) 6271 [in Russian].
Pouchou, J.L. and Pichoir, E (1984) A new model for quantitative analysis: Part I. Application to the analysis of homogeneous samples. La Recherche Aerospatiale, 3, 1338.
Pouchou, J.L. and Pichoir, E (1985) ‘PAP’ j(ρZ) correction procedure for improved quantitative micro-analysis. Pp. 104106 in: Microbeam Analysis (J.T Armstrong, editor). San Francisco Press, San Francisco, USA.
Rammelsberg, C. (1880) Ueber die vanadinerze aus dem Staat Córdoba in Argentinien. Zeitschrift der Deutschen Geologischen Gesellschaft, 32, 708713.
Robinson, K., Gibbs, G.V and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.
Rosicky, V (1912) Preslit, ein neues Mineral von Tsumeb in Deutsch-Südwestafrika. Zeitschrift für Krystallographie und Mineralogie, 51, 521526.
Roth, P. (2007) Bearthite. Pp. 4445 in: Minerals First Discovered in Switzerland and Minerals Named After Swiss Individuals. Kristallografik Verlag, Achberg, Germany, 239 pp.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.
Spencer, L.J. (1913) A (sixth) list of new mineral names. Mineralogical Magazine, 16, 352378.
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical Structural Mineral Classification System. 9th Edition. E. Schweizerbart, Ed., Stuttgart (Germany), 870 pp.
Vésignié, J.P.L. (1935) Présentation d'échantillons. Bulletin de la Société Française de Minéralogie, 58, 45.
Williams, S.A. (1973) Heyite, Pb5Fe2(VO4)2O4, a new mineral from Nevada. Mineralogical Magazine, 39, 6568.
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Yakubovich, O.V., Massa, W and Pekov, I.V (2002) Crystal structure of the new mineral bushmakinite, Pb2﹛(Al,Cu)[PO4][(V,Cr,P)O4](OH)﹜. Doklady Earth Sciences, 382, 100105 [in Russian].
Yvon, K., Jeitschko, W and Parthé, E. (1977) LAZY PULVERIX, a computer program, for calculating Xray and neutron diffraction powder patterns. Journal of Applied Crystallography, 10, 7374.
Zubkova, N.V., Pushcharovsky, D.Y., Giester, G., Tillmanns, E., Pekov, I.V. and Kleimenov, D.A. (2002) The crystal structure of arsentsumebite, Pb2Cu[(As,S)O4]2(OH). Mineralogy and Petrology, 75, 7988.


Type Description Title
Supplementary materials

Cámara et al. supplementary material
Structure factors file

 Unknown (72 KB)
72 KB
Supplementary materials

Cámara et al. supplementary material
Crystallographic information file

 Unknown (25 KB)
25 KB

As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: III. Canosioite, Ba2Fe3+(AsO4)2(OH), description and crystal structure

  • F. Cámara (a1) (a2), E. Bittarello (a1) (a2), M. E. Ciriotti (a3), F. Nestola (a4), F. Radica (a5), F. Massimi (a6), C. Balestra (a7) and R. Bracco (a8)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed