Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T09:52:04.356Z Has data issue: false hasContentIssue false

The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group

Published online by Cambridge University Press:  05 July 2018

Alwan K. Alwan
Affiliation:
Department of Chemistry, University College, Cardiff CF1 1XL
Peter A. Williams
Affiliation:
Department of Chemistry, University College, Cardiff CF1 1XL

Synopsis

Free energies of formation of liebigite, Ca2UO2 (Co3)3·10H2O, swartzite, CaMgUO2(Co3)3·12H2O, bayleyite, Mg2UO2(CO3)3·18H2O, and andersonite, Na2CaUO2(CO3)3·6H2O have been determined from solution studies at various temperatures. ΔGf(298.2K)° values for the above minerals are −6226±12, −6607±8, −7924±8 and −5651±24 KJ mol−1 respectively. ΔH0f(298.2K) values respectively are −7037±24, −7535±20, −9192±20, and −5916±36 kJ mol−1. These results have been used to construct the stability diagram for the four minerals shown in fig. I. Andersonite can only form when the activity of the sodium ion, aNa+, is relatively high and aCa2+ and aMg2+ are small. The interconversions of the sodium-free species are defined. When aMg2+/aCa2+ < 0.32 liebigite is the stable phase. If aMg2+/aCa2+ > 7.94, bayleyite forms preferentially. One might therefore expect the bayleyite-andersonite association to be more common than liebigite-andersonite, but this is entirely dependent upon the relative concentrations of Mg2+(aq) and Ca2+(aq) in the solutions from which the minerals form.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reference

Haacke, (D. F.) and Williams, (P. A.), 1979. Mineral. Mag. 43, 539-41.CrossRefGoogle Scholar

References

Alwan, (A.K.) and Williams, (P.A.) 1979. Transition Met. Chem. 4, 128-32.CrossRefGoogle Scholar
Axelrod, (J.M.), Grimaldi, (F.S.), Milton, (C.) md Murata, (K.J.) 1951. Am. Mineral. 36, 1-22.Google Scholar
Babko, (A.K.) and Kodenskaya, (V.S.) 1960. Ross. J. Inorg. Chem. 11, 1241-4.Google Scholar
Baes, (C.F.) and Mesmer, (R.E.) 1976. The hydrolysis of Cations. John Wiley mid Sons.Google Scholar
Barczak, (V.J.) 1966. Am. Mineral. 51, 929-30.Google Scholar
Barner, (H.E.) and Scheuerman, (R.V.) 1978. Handbook of Thermschemical Data for Compounds and Aqueous Species. John Wiley and Sons.Google Scholar
Cinnéide, (S.O.), Scanlon, (J.P.) and Hynes, (M.J.) 1975. J. Inorg. Nucl. Chem. 37, 1013-8.CrossRefGoogle Scholar
Davidson, (D.M.) and Kerr, (P.F.) 1968. Bull. Geol. Soc. Amer. 79, 1508-26.CrossRefGoogle Scholar
Frondel, (C.) 1958. Bull. U.S. Geol. Surv. 1064.Google Scholar
Haacke, (J.F.) and Williams, (P.A.) 1979. Mineral. Mag. in press.Google Scholar
Jedlicka, (J.F.) 1999. Rocks and Mineral. 34, 119-20. (M.A- 14-869).CrossRefGoogle Scholar
Langmuir, (D.) 1978a. Geochim. Cosmochim. Acta. 42, 547-69.CrossRefGoogle Scholar
Langmuir, (D.) 1978b. Mineral Assoc. Can. Short Course Handbook, 3, 17-55.Google Scholar
Matsobara, (S.) 1976. Bull. Nat. Sci. MUS. ser, C (Geol.). 2, 111-4.Google Scholar
Meyrowitz, (R.) 1962. Prof. Pap. U.S. Geol. Surv. 450-C, 99.Google Scholar
Meyrowitz, (R.) and Lindberg, (M.L.) 1960. Prof. Pap. U.S. Geol. Surv. 400B, 440-1.Google Scholar
Meyroitz, (R.) and Ross, (D.R.) 1961. Prof. Pap. U.S. Geol. Surv. 424-B, 266.Google Scholar
Meyrows, (R.), Ross, (D.R.) and Weeks, (A.D.) 1963. Prof. Pap. U.S. Geol. surv. 475-B, 162-3.Google Scholar
Perrin, (D.D.) and Sayce, (I.G.) 1967. Talanta 14 833-42.CrossRefGoogle Scholar
Reardon, (E.J.) and Langmuir, (D.) 1974. Amer. J. Sci. 274, 599-612.CrossRefGoogle Scholar
Rimsaite, (J.) 1977. Pap. GeOl. Surv. Can. 77-1C, 95-7.Google Scholar
Scanlon, (J.P.) 1977. J. Inorg. Nucl. chem., 39, 655-9.Google Scholar
Sergeyeva, (E.I.), Nikitin, (A.A.), Khodakovskiy, (I.L.) and Naumov, (G,B.) 1972. Geochem. Int. 9, 900-10.Google Scholar
Smith, (J.L.) 1848. Amer. J. Sci. 5, 336-8.Google Scholar
Smith, (J.L.) 1851. Amer. J. Sci. 11, 259.Google Scholar
Thompson, (M.E.), Weeks, (A.D.) and Sherwood, (A.M.) 1955, Am. Mineral. 40, 201-6.Google Scholar
Truesdell, (A.H.) and Jones, (B.F.) 1974. J. Res. U.S. Geol. Surv. 2, 233-48.Google Scholar
Walenta, (K.) 1977. Alffschlus. 28, 177-88. (M.A. 78-1233).Google Scholar
Watanabe, (K.) 1976. J. Fac. Sci. Shinshu Univ. 11, 53-113. (M.A. 78-2790).Google Scholar
Welin, (E.) 1958. Arkiv f. Min. Geol. 2, 373-9.Google Scholar
Wilkins, (R.W.T.) 1971. Zeit. Krist. 134, 285-90.Google Scholar