Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-05T02:00:00.858Z Has data issue: false hasContentIssue false

Alpine oxidation of lithium micas in Permian S-type granites (Gemeric unit, Western Carpathians, Slovakia)

Published online by Cambridge University Press:  05 July 2018

I. Petrík*
Affiliation:
Geological Institute, Slovak Academy of Sciences, Dúbravská9, 840 05 Bratislava, Slovakia
Š. Čík
Affiliation:
Geological Institute, Slovak Academy of Sciences, Dúbravská9, 840 05 Bratislava, Slovakia
M. Miglierini
Affiliation:
Institute of Nuclear and Physical Engineering, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
T. Vaculovič
Affiliation:
Tomáš Vaculovič CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
I. Dianiška
Affiliation:
Mierová16, 04 801 Rožňava, Slovakia
D. Ozdín
Affiliation:
Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Mlynskádolina, 842 15 Bratislava, Slovakia

Abstract

Lithium micas of the zinnwaldite and phengite–Li-phengite series occur as characteristic minerals in Permian Li-F-(P) granites of the western Gemeric unit (Western Carpathians) accompanied by topaz, tourmaline, Nb, Ta, Ti, Sn oxides and aluminophosphates. The calculated Li2O contents of all the mica analysed, together with Rb2O and Cs2O were confirmed by LA-ICP-MS analyses for all the identified micas. Samples from three localities were investigated: two surficial (Surovec, Vrchsúl’ová); and one drill hole (Dlhá dolina). Zinnwaldite (polylithionite) occurs in the upper level of the Dlhá dolina granitic intrusion and in the nearby shallow satellite body of Surovec. The lower level porphyritic granites contain only siderophyllite. The Vrchsúl’ ová micas are closer in composition to Li-annite and siderophyllite. Dioctahedral micas are mostly phengites, although zinnwaldite-bearing granites are rich in late-crystallizing Li-phengite, which extensively replaces earlier zinnwaldite. The secondary Liphengite and phengite are interpreted as products of Alpine metamorphism during Cretaceous burial and subsequent exhumation of the Gemeric unit. Reactions are suggested explaining the formation of Li-phengite by reaction of zinnwaldite with phengite or with muscovite. All mica types were investigated by Mössbauer spectroscopy, which showed high degrees of oxidation (25–50% Fe3+ of total Fe) with the exception of zinnwaldite from Vrchsúl’ová, which may have preserved an original, reduced value of 10%. The metamorphic assemblage present permitted calculation of P-T-X conditions: T = 184°C, P = 320 MPa, with oxidation of siderophyllite to phengite + goethite and fO2 at ΔNN = 4.7, confirming the low-grade conditions of the Alpine metamorphism in agreement with previous estimates.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antipin, V.S., Savina, E.A. and Mitichkin, M.A. (2006) Geochemistry and formation conditions of rare-metal granites with various fluorine-bearing minerals (fluorite, topaz and cryolite). Geochemistry International, 44, 965975.CrossRefGoogle Scholar
Bartels, A., Holtz, F. and Linnen, R.L. (2010) Solubility of manganotantalite and manganocolumbite in pegmatitic melts. American Mineralogist, 95, 537544.CrossRefGoogle Scholar
Breiter, K. and Škoda, R. (2012) Vertical zonality of fractionated granite plutons reflected in zircon chemistry: the Cínovec A-type versus the Beauvoir S-type suite. Geologica Carpathica, 63, 383398.CrossRefGoogle Scholar
Breiter, K., Förster, H.J. and Seltmann, R. (1999) Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge – Slavkovskýles metallogenetic province. Mineralium Deposita, 34, 505521.CrossRefGoogle Scholar
Broska, I. and Uher, P. (1991) Regional typology of zircon and its relationship to allanite/monazite antagonism (on an example of Hercynian granitoids of Western Carpathians). Geologica Carpathica, 42, 271277.Google Scholar
Broska, I. and Petrík, I. (2011) Accessory Fe-Ti oxides in the West-Carpathian I-type granitoids: Witnesses of the granite mixing and late oxidation process. Mineralogy and Petrology, 102, 8797.CrossRefGoogle Scholar
Broska, I., Kubiš, M., Williams, C.T. and Konečný, P. (2002) The composition of rock-forming and accessory minerals from the Gemeric granites (Hnilec area, Gemeric superunit, Western Carpathians). Bulletin of the Czech Geological Survey, 77, 147155.Google Scholar
Charoy, B. and Noronha, F. (1996) Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). Journal of Petrology, 37, 7394.CrossRefGoogle Scholar
Charoy, B., Chaussidon, M. and Noronha, F. (1995) Lithium zonation in white micas from the Argemela microgranite (central Portugal): an in situ ion-, electron-microprobe and spectroscopic investigation. European Journal of Mineralogy, 7, 335352.CrossRefGoogle Scholar
Clarke, D.B., Wunder, B., Förster, H.-J., Rhede, D. and Hahn, A. (2009) Experimental investigation of nearliquidus andalusite-topaz relations in synthetic peraluminous haplogranites at 200 MPa. Mineralogical Magazine, 73, 9971007.CrossRefGoogle Scholar
Cuney, M., Marignac, Ch. and Weisbrod, A. (1992) The Beauvoir topaz-lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn- Li-Ta-Nb-Be mineralization. Economic Geology, 87, 17661794.CrossRefGoogle Scholar
Dianiška, I., Breiter, K. Broska, I. Kubiš, M. and Malachovský, P. (2002) First phosphorus-rich Nb- Ta-Sn-specialised granite from the Carpathians – Dlhá dolina valley granite pluton, Gemeric superunit. Geologica Carpathica, 53, Special Issue (CDROM).Google Scholar
Dianiška, I., Uher, P. Hurai, V. Huraiová, M., Frank, W. Konečný, P. and Král, J. (2007) Mineralization of rare-metal granites. Pp. 254–330 in: Sources of fluids and genesis of mineralizations in the Gemeric unit (V. Hurai, editor). Open file report, D, State Geological Survey, Bratislava (in Slovak).Google Scholar
Dolejš, D. and Baker, D.R. (2004) Thermodynamic analysis of the system Na2O–K2O–CaO–Al2O3–SiO2–H2O–F2O–1: Stability of fluorine-bearing minerals in felsic igneous suites. Contributions to Mineralogy and Petrology, 146, 762778.CrossRefGoogle Scholar
Ďurkovičová, J. (1966) Mineralogical and geochemical investigation of biotite from granitoid rocks of the Western Carpathians. Geologické práce, Zprávy, 39, 5368.(in Slovak).Google Scholar
Eugster, H.P. and Wones, D.R. (1962) Stability relations of the ferruginous biotite, annite. Journal of Petrology, 3, 82125.CrossRefGoogle Scholar
Faryad, W.S. and Dianiška, I. (1999) Alpine overprint in the Early Paleozoic of the Gemericum. Mineralia Slovaca, 31, 485490.(in Slovak).Google Scholar
Finger, F. and Broska, I. (1999) The Gemeric S-type granites in southeastern Slovakia: Late Paleozoic or Alpine intrusions? Evidence from electron-microprobe dating of monazite. Schweizerische Mineralogische und Petrographische Mitteilungen, 79, 439443.Google Scholar
Förster, H.-J., Tischendorf, G., Trumbull, R.B. and Gottesmann, B. (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40, 16131645.CrossRefGoogle Scholar
Gonser, G. and Uhlig, J. (1991) Mössbauer Study of Li- Fe micas of tin-tungsten deposits. Isotopenpraxis Isotopes in Environmental and Health Studies, 27, 8186.CrossRefGoogle Scholar
Gordienko, V.V. and Ponomareva, N.I. (1988) Physicochemical stability conditions of Li-micas of the lepidolite series. Zapiski Vsesojuznogo Mineralogicheskogo Obschchestva, 117(6), 633638 (in Russian).Google Scholar
Halter, W.E. and Williams-Jones, A.E. (1999) Application of topaz-muscovite F-OH exchange as a geothermometer. Economic Geology, 94, 12491258.CrossRefGoogle Scholar
Henderson, C.M.B., Martin, J.S. and Mason, R.A. (1989) Compositional relations in Li-micas from S.W. England and France: an ion- and electronmicroprobe study. Mineralogical Magazine, 53, 427449.CrossRefGoogle Scholar
Holland, T.J.B. and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333383.CrossRefGoogle Scholar
Hurai, V., Lexa, O., Schulmann, K., Montigny, R., Prochaska, W., Frank, W., Konečný, P., Král’, J., Thomas, R. and Chovan, M. (2008) Mobilization of ore fluids during Alpine metamorphism: evidence from hydrothermal veins in the Variscan basement of Western Carpathians, Slovakia. Geofluids, 8, 181207.CrossRefGoogle Scholar
Janák, M., Plašienka, D., Frey, M., Cosca, M., Schmidt, S.Th., Lupták, B. and Méres, Š. (2001) Cretaceous evolution of a metamorphic core complex, the Veporic unit, Western Carpathians (Slovakia): P-T conditions and in situ 40Ar/39Ar UV laser probe dating of metapelites. Journal of Metamorphic Geology, 19, 197216.CrossRefGoogle Scholar
Johan, Z., Strnad, L. and Johan, V. (2012) Evolution of the Cínovec (Zinnwald) granite coupola, Czech Republic: composition of feldspars and micas, a clue to the origin of W, Sn mineralization. The Canadian Mineralogist, 50, 11311148.CrossRefGoogle Scholar
Keppler, H. (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114, 479488.CrossRefGoogle Scholar
Kesraoui, M. and Nedjari, S. (2002) Contrasting evolution of low-P rare metal granites from two different terranes in the Hoggar area, Algeria. Journal of African Earth Sciences, 34, 247257.CrossRefGoogle Scholar
Kohút, M. and Stein, H. (2005) Re-Os molybdenite dating of granite-related Sn-W-Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia. Mineralogy and Petrology, 85, 117127.CrossRefGoogle Scholar
Kunitz, W. (1924) Die beziehungen zwischen der chemischen Zusammensetzung und den physikalisch- optischen Eigenschaften innerhalb der Glimmergruppe. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, B-B 50, 365413.Google Scholar
Lexa, O., Schulmann, K. and Ježek, J. (2003) Cretaceous collision and indentation in the West Carpathians: view based on structural analysis and numerical modeling. Tectonics, 22, DOI: 10.1029/2002TC001472.CrossRefGoogle Scholar
London, D. and Burt, D.M. (1982) Chemical models for lithium aluminosilicate stabilities in pegmatites and granites. American Mineralogist, 67, 494509.Google Scholar
Lukkari, S. and Holtz, F. (2007) Phase relation of a Fenriched peraluminous granite: an experimental study of the Kymi topaz granite stock, southern Finland. Contributions to Mineralogy and Petrology, 153, 273288.CrossRefGoogle Scholar
Malachovský, P., Dianiška, I., Matula, I., Kamenický, J., Kobulský, J., Hodermarský, J., Fabian, M., Radvanec, M., Kozáč, J., Vlasák, M., Mihalič, A., Ščerbáková, A., Seliga, J. and Novoveský, M. (1983) SGR – high temperature mineralization – Sn, W, Mo ores, 248 pp. Open file report, State Geological Survey, Bratislava (in Slovak).Google Scholar
Marakushev, A.A. and Tararin, I.A. (1965) On mineralogical criteria of alkalinity of granitoids. Izvestija Akademii Nauk SSSR, Seriya Geologicheskaya 3, 2037.(in Russian).Google Scholar
Petrík, I. and Broska, I. (2008) New occurrence of Li granites in the Gemeric unit of the Western Carpathians (Vrchsúl’ová, area of Hnilec). Mineralia Slovaca, 40, 34. 205 (in Slovak).Google Scholar
Petrík, I. and Kohút, M. (1997) The evolution of granitoid magmatism during the Variscan orogen in the Western Carpathians. Pp. 235–252 in: Geological Evolution of the Western Carpathians. (P. Grecula, D. Hovorka and M. Putiš, editors). Mineralia Slovaca, Monographs, Bratislava.Google Scholar
Petrík, I., Kubiš, M., Konečný, P., Broska, I. and Malachovský, P. (2011) Rare phosphates from the Surovec topaz – Li-mica microgranite, Gemeric unit, Western Carpathians, Slovakia: the role of the F/H2O in the melt. The Canadian Mineralogist, 49, 521540.CrossRefGoogle Scholar
Plašienka, D., Grecula, P., Putiš, M., Kováč, M. and Hovorka, D. (1997) Evolution and structure of the Western Carpathians: an overview. Pp. 1–24 in: Geological Evolution of the Western Carpathians (P. Grecula, D. Hovorka and M. Putiš, editors). Mineralia Slovaca, Monographs, Bratislava.Google Scholar
Plašienka, D., Broska, I., Kissová, D. and Dunkl, I. (2007) Zircon fission-track dating of granites from the Vepor–Gemer Belt (Western Carpathians): constraints for the Early Alpine exhumation history. Journal of Geosciences, 52, 113123.Google Scholar
Poller, U., Uher, P., Broska, I., Plašienka, D. and Janák, M. (2002) First Permian Early-Triassic ages for tinbearing granites from the Gemeric unit (Western Carpathians, Slovakia): connection to the postcollisional extension of the Variscan orogen and Stype granite magmatism. Terra Nova, 14, 4148.CrossRefGoogle Scholar
Radvanec, M., Konečný, P., Ondrejka, M., Putiš, M., Uher, P. and Németh, Z. (2009) The Gemeric granites as an indicator of the crustal extension above the Late Variscan sunduction zone and during the Early Alpine riftogenesis (Western Carpathians): An interpretation from the monazite and zircon ages dated by CHIME and SHRIMP methods. Mineralia Slovaca, 41, 381394.Google Scholar
Reay, A. (1981) The effect of disc mill grinding on some rock-forming minerals. Mineralogical Magazine, 44, 179182.CrossRefGoogle Scholar
Rieder, M. (1971) Stability and physical properties of synthetic lithium-iron micas. American Mineralogist, 56, 256280.Google Scholar
Rieder, M., Huka, M., Kučerová, D., Minařík, L., Obermajer, J. and Povondra, P. (1970) Chemical composition and physical properties of lithium-iron micas from the Krušné hory Mts. (Erzgebirge). Contributions to Mineralogy and Petrology, 27, 131158.CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., D’yakonov, Yu.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslowich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1999) Nomenclature of micas. Mineralogical Magazine, 63, 267279.CrossRefGoogle Scholar
Rub, M.G., Pavlov, B.A., Cambel, B. and Veselskij, J. (1977) Typomorphic features of micas and accessory minerals in Gemeride granites of Slovakia. Geologickýzborník – Geologica Carpathica, 28, 291310.(in Russian).Google Scholar
Tauson, L.V. (1977) Geochemical Types and Orebearing Potential of Granitoids. Nauka Publishing House, Moscow, 279 pp. (in Russian).Google Scholar
Tindle, A.G. and Webb, P.C. (1990) Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. European Journal of Mineralogy, 2, 595610.CrossRefGoogle Scholar
Tischendorf, G. (1977) Geochemical and petrographic characteristics of silicic magmatic rocks associated with rare-element mineralization. Pp. 41–96 in: Metallization associated with Acid magmatism, 2 (M. Stemprok, L. Burnol and G. Tischendorf, editors). Geological Survey, Prague.Google Scholar
Tischendorf, G., Gottesmann, B., Förster, H.-P. and Trumbull, R.B. (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809834.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.-P., Gottesmann, B. and Rieder, M. (2007) True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71, 285320.CrossRefGoogle Scholar
Tsvetkov, A.I. and Valyashikhina, E.P. (1956) On hydration and oxidation of the micas. Izvestii Akademii Nauk USSR, 5, 7483.(in Russian).Google Scholar
Uher, P. and Broska, I. (1996) Post-orogenic Permian granitic rocks in the Western Carpathian–Pannonian area: geochemistry, mineralogy and evolution. Geologica Carpathica, 47, 311321.Google Scholar
Vozárová, A., Šarinová, K., Rodionov, N., Laurinc, D., Paderin, I., Sergeev, S. and Lepkhina, E. (2012) U-Pb ages of detrital zircons from Paleozoic metasandstones of the Gelnica terrane (Southern Gemeric unit, Western Carpathians, Slovakia): evidence for Avalonian – Amazonian provenance. International Journal of Earth Sciences, 101, 919936.CrossRefGoogle Scholar
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Žák, T. and Jirásková, Y. (2006) CONFIT: Mössbauer spectra fitting program. Surface and Interface Analysis, 38, 710714.CrossRefGoogle Scholar