Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-29T00:46:11.144Z Has data issue: false hasContentIssue false

Ag-Cu exchange equilibria between α-miargyrite, chalcostibite, pyrargyrite, and high-skinnerite: constraints on Ag-Cu mixing in α-miargyrite and chalcostibite

Published online by Cambridge University Press:  05 July 2018

D. E. Harlov*
Affiliation:
Projektbereich 4.1, GeoForschungsZentrum, Telegrafenberg, D-14473 Potsdam, Germany

Abstract

Ag-Cu exchange equilibria between α-miargyrite AgSbS2 and pyrargyrite Ag3SbS3 and between chalcostibite CuSbS2 and both pyrargyrite and high-skinnerite Cu3SbS3 are reported for the temperature range 150–350°C. All of these features are constrained by Ag-Cu exchange experiments (evacuated silica tubes; variable mass ratio) over the temperature range 120–400°C. Chalcostibite is found to take very little Ag into its structure. Utilizing Ag-Cu data from this study as well as the Ag-Cu solution models for pyrargyrite and high-skinnerite, a two-site Ag-Cu non-convergent ordered solution model for α-miargyrite () and a one-site Ag-Cu mixing model for chalcostibite ( = 25.0 kJ/gfw) are formulated. These results are constrained by a miscibility gap between α-miargyrite and chalcostibite from 225 to 325°C. The mixing model for α-miargyrite is expanded to include As for which α-miargyrite has a limited solubility along the Sb-As join with smithite AgAsS2.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birch, W.D. (1981) Silver sulphosalts from the Meerschaum mine, Mt. Wills, Victoria, Australia. Mineral. Mag., 44, 73–8.CrossRefGoogle Scholar
Birch, W.D. (1992) Mineralogy of the Mt. Wills goldfield, Victoria, with emphasis on the sulphosaltminerals. Austral. Mineral., 6, 317.Google Scholar
Ghiorso, M.S. (1990) The application of the Darken equation to mineral solid solutions with variable degrees of order-disorder. Amer. Mineral., 75, 539–43.Google Scholar
Ghosal, S. and Sack, R.O. (1995) As-Sb energetics in argentian sulphosalts. Geochim. Cosmochim. Acta, 59, 3573–9.CrossRefGoogle Scholar
Grigas, I., Mozgova, N.N., Orlyukas, A. and Samulenis, V. (1976) The phase transition in CuSbS2 crystals. Sov. Phys. Crystall., 20, 741–2.Google Scholar
Harker, D. (1936) The application of the three-dimensional Patterson method and the crystal structures of proustite, Ag3AsS3, and pyrargyrite, Ag3SbS3 . J. Chem. Phys., 4, 381–90.CrossRefGoogle Scholar
Harlov, D.E. (1995) Thermochemistry of minerals in the system Ag2S-Cu2S-Sb2S3-As2S3. Ph.D. dissertation, Purdue Univ., USA.Google Scholar
Harlov, D.E. (1999) Thermochemistry of Ag-Cu exchange equilibria between proustite, sinnerite, and pearceite: constraints on Ag-Cu and As-Sb mixing in pyrargyrite-proustite. Eur. J. Min. (in press).CrossRefGoogle Scholar
Harlov, D.E. and Sack, R.O. (1994) Thermochemistry of polybasite-pearceite solutions. Geochim. Cosmochim. Acta, 58, 4363–75.CrossRefGoogle Scholar
Harlov, D.E. and Sack, R.O. (1995 a) Ag-Cu exchange equilibria between pyrargyrite, high-skinnerite, and polybasite solutions. Geochim. Cosmochim. Acta, 59, 867–74.Google Scholar
Harlov, D.E. and Sack, R.O. (1995 b) Thermochemistry of Ag2S-Cu2S sulfide solutions: constraints derived from coexisting Sb2S3-and As2S3-bearing sulphosalts. Geochim. Cosmochim. Acta, 59, 4351–65.CrossRefGoogle Scholar
Hocart, M.R. (1937) Schema structural de la proustite et de la pyrargyrite. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences Paris, 205, 6870.Google Scholar
Hofmann, W. (1935) Beitrag zur Kristallchemie der Sulfosalze des Arsens, Antimons und Wismuts. Zeit. Kristallogr., 92, 174–85.Google Scholar
Karup-Møller, S. (1974) Mineralogy of two copper-antimony-sulphide-oxide occurrences from the Ilimaussaq alkaline intrusion in South Greenland. Neues Jahrb. Mineral. Abh., 122, 291313.Google Scholar
Karup-Møller, S. and Makovicky, E. (1974) Skinnerite, Cu3SbS3, a new sulphosalt from the Ilimaussaq alkaline intrusion, South Greenland. Amer. Mineral., 59, 889–95.Google Scholar
Kaspar, P., Mrazek, Z. and Ridkosil, T. (1983) Andorite, fizelyite and miargyrite; a decomposition of a natural solid solution?. Neues Jahrb. Mineral. Abh., 147, 4757.Google Scholar
Kaspar, P., Ridkosil, T. and Srein, V. (1985) Silver-rich minerals from Trebsko near Pribram, central Bohemia, Czechoslovakia. Neues Jahrb. Mineral. Mh., 1928.Google Scholar
Kaspar, P., Ridkosil, T. and Slavicek, P. (1991) Silver minerals of the Trebesko deposit, Pribram orefield, Czechoslovakia. Mineral. Rec., 22, 209–12.Google Scholar
Keighin, C.W. and Honea, R.M. (1969) The system Ag-Sb-S from 600°C to 200°C. Mineral. Deposita, 4, 153–71.CrossRefGoogle Scholar
Knowles, C.R. (1964) A redetermination of the structure of miargyrite, AgSbS2 . Acta Crystallogr., 17, 846–51.CrossRefGoogle Scholar
Makovicky, E. and Skinner, B.J. (1972) Crystallography of Cu3SbS3 (abstr.) Winter Meet. Amer. Crystallogr. Assoc. Albuquerque, New Mexico, April, 1972, Abstract K5.Google Scholar
Nakayama, E. (1986) Paragenetic and compositional variations of Au-Ag minerals in the ginguro ores from the Nebazawa mine, Gunma Prefecture. Mining Geol., 36, 511–22.Google Scholar
Sack, R.O. (1992) Thermochemistry of tetrahedrite-tennanite fahlores. In The Stability of Minerals (Ross, N.L. and Price, G.D., eds.), 243–66. Chapman & Hall, London.Google Scholar
Sack, R.O. and Ghiorso, M.S. (1989) Importance of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2 . Contrib. Mineral. Petrol., 102, 4168.CrossRefGoogle Scholar
Smith, G.F.H. and Prior, G.T. (1907) Red silver minerals from the Binnenthal, Switzerland. Mineral. Mag., 14, 283307.Google Scholar
Smith, J.V., Pluth, J.J. and Han, S. (1997) Crystal structure refinement of miargyrite, AgSbS2 . Mineral. Mag., 61, 671–5.CrossRefGoogle Scholar
Solly, R.H. (1905) Some new silver minerals from the Binnenthal, Switzerland. Mineral. Mag., 14, 7282.Google Scholar
Sugaki, A., Isobe, K. and Kitakaze, A. (1982) Silver minerals from the Sanru mine, Hokkaido, Japan. J. Jap. Assoc. Mineral. Petrol. Econ. Geol., 77, 6577.CrossRefGoogle Scholar
Sugaki, A., Kitakaze, A. and Isobe, K. (1984) On the gold-silver deposits of the Koryu mine, Hokkaido, Japan. J. Jap. Assoc. Mineral. Petrol. Econ. Geol., 79, 405–23.CrossRefGoogle Scholar
Sugaki, A., Kim, O.J. and Kim, W.J. (1986) Gold and silver ores from the Geumwang mine in South Korea and their mineralization. Mining Geol., 36, 555–72.Google Scholar