Hostname: page-component-546b4f848f-fhndm Total loading time: 0 Render date: 2023-06-05T05:55:09.978Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Zvěstovite-(Zn), Ag6(Ag4Zn2)As4S13, a new tetrahedrite-group mineral from Zvěstov, Czech Republic

Published online by Cambridge University Press:  05 July 2021

Jiří Sejkora*
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00, Praha 9, Czech Republic
Cristian Biagioni
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, I-56126 Pisa, Italy
Luboš Vrtiška
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00, Praha 9, Czech Republic
Yves Moëlo
Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
*Author for correspondence: Jiří Sejkora, Email:


The new mineral, zvěstovite-(Zn), ideally Ag6(Ag4Zn2)As4S13, was found in quartz–baryte gangue at the mine dump of the abandoned small deposit of Zvěstov, central Bohemia, Czech Republic. Zvěstovite-(Zn) is associated with tennantite-(Zn), tetrahedrite-(Zn), argentotennantite-(Zn), acanthite and supergene azurite and malachite. The new mineral occurs as rare relic anhedral grains rimmed by acanthite, up to 100 μm in size. Zvěstovite-(Zn) is grey, Mohs hardness is ca. 3½–4, in agreement with other members of the tetrahedrite group; the calculated density is 5.16–3. In reflected light, zvěstovite-(Zn) is grey with a greenish tint, without bireflectance, pleochroism or anisotropy. Deep red internal reflections are ubiquitous. Reflectance values of zvěstovite-(Zn) in air (R%) are: 28.5 at 470 nm, 26.9 at 546 nm, 25.5 at 589 nm and 23.8 at 650 nm. The empirical formula for zvěstovite-(Zn), based on electron-microprobe analyses (n = 4), is Ag6.27[(Ag3.90Cu0.38)Σ4.28(Zn1.60Fe0.09Cd0.03)Σ1.72]Σ6.00(As2.26Sb1.48)Σ3.74S12.50. The ideal formula is Ag6(Ag4Zn2)As4S13, which requires (in wt.%) Ag 56.01, Zn 6.79, As 15.56 and S 21.64, total 100.00. Zvěstovite-(Zn) is cubic, I$\bar{4}$3m, with unit-cell parameters: a = 10.850(2) Å, V = 1277.3(8) Å3 and Z = 2. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I) (hkl)] are: 3.1321(100) (222), 2.7125(21) (400), 1.9809(11) (521), 1.9180(31) (440) and 1.6357(15) (622). According to the single-crystal X-ray diffraction data (Robs = 0.051), the crystal structure of zvěstovite-(Zn) agrees with the general features of the members of the tetrahedrite group. Zvěstovite-(Zn) is named after its type locality, Zvěstov; the suffix indicates the dominant divalent C-constituent, according to the approved nomenclature of the tetrahedrite group. It is the As-isotype of rozhdestvenskayaite-(Zn). The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2020-061).

Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Associate Editor: František Laufek


Biagioni, C., George, L.G., Cook, N.J., Makovicky, E., Moëlo, Y., Pasero, M., Sejkora, J., Stanley, C.J., Welch, M.D. and Bosi, F. (2020a) The tetrahedrite group: Nomenclature and classification. American Mineralogist, 105, 109122.CrossRefGoogle Scholar
Biagioni, C., Sejkora, J., Moëlo, Y., Makovicky, E., Pasero, M. and Dolnícek, Z. (2020b) Kenoargentotennantite-(Fe), IMA 2020-062. In: CNMNC Newsletter 58. Mineralogical Magazine, 84, Scholar
Bosi, F, Hatert, F, Hålenius, U., Pasero, M., Miyawaki, R. and Mills, S.J. (2019) On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions. Mineralogical Magazine, 83, 627632.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.10.1107/S0108768190011041CrossRefGoogle Scholar
Bruker AXS Inc. (2016) APEX 3. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.Google Scholar
Flack, H.D. (1983) On enantiomorph-polarity estimation. Acta Crystallographica, A39, 876881.CrossRefGoogle Scholar
Foit, F.F. Jr and Ulbricht, M.E. (2001) Compositional variation in mercurian tetrahedrite–tennantite from the epithermal deposits of the Steens and Pueblo Mountains, Harney County, Oregon. The Canadian Mineralogist, 39, 819830.CrossRefGoogle Scholar
Gan, L.C. (1980) Manson Lode, a Stratabound Base Metal-Silver Deposit in North Kelantan, Malaysia. Unpublished thesis, Montan-Universität Leoben, Austria, 171 pp.Google Scholar
Ixer, R.A. and Stanley, C.J. (1983) Silver mineralization at Sark's Hope mine, Sark, Channel Islands. Mineralogical Magazine, 47, 539545.CrossRefGoogle Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1986) Compositional trends in tetrahedrite. The Canadian Mineralogist, 24, 385397.Google Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1988) Crystal chemistry of tetrahedrite. American Mineralogist, 73, 389397.Google Scholar
Kenngott, A. (1853) Das Mohs'sche Mineralsystem, dem gegenwärtigen Standpuncte der Wissenschaft gemäss bearbeitet. Verlag und Druck von Carl Gerold & Sohn, Wien, 164 pp.Google Scholar
Koch, H.-P. and Heider, K.-J. (2018) Die Selenid-Mineralisation der Grube “Frische Lutter” bei Bad Lauterberg, Harz. Der Aufschluss, 69, 121.Google Scholar
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Kvaček, M., Novák, F. and Drábek, M. (1975) Canfieldite and silver-rich tetrahedrite from the Kutná Hora ore district. Neues Jahrbuch für Mineralogie, Monatshefte, 171179.Google Scholar
Li, X. and Wang, G. (1990) Studies of the tetrahedrite-group minerals from Dachang ore field, Guangxi, China. Acta Mineralogica Sinica, 10, 119126 [in Chinese].Google Scholar
Lind, I.L. and Makovicky, E. (1982) Phase relations in the system Cu–Sb–S at 200°C, 108 Pa by hydrothermal synthesis. Microprobe analyses of tetrahedrite – a warning. Neues Jahrbuch für Mineralogie, Abhandlungen, 145, 134156.Google Scholar
Makovicky, E. and Karup-Møller, S. (1994) Exploratory studies on substitution of minor elements in synthetic tetrahedrite. Part I. Substitution by Fe, Zn, Co, Ni, Mn, Cr, V and Pb. Unit-cell parameter changes on substitution and the structural role of “Cu2+. Neues Jahrbuch für Mineralogie, Abhandlungen, 167, 89123.Google Scholar
Makovicky, E. and Karup-Møller, S. (2017) Exploratory studies of substitutions in the tetrahedrite/tennantite-goldfieldite solid solution. The Canadian Mineralogist, 55, 233244.10.3749/canmin.1600067CrossRefGoogle Scholar
Makovicky, E., Karanović, L., Poleti, D. and Balić-Žunić, T. (2005) Crystal structure of copper-rich unsubstituted tennantite, Cu12.5As4S13. The Canadian Mineralogist, 43, 679688.CrossRefGoogle Scholar
Maske, S. and Skinner, B.J. (1971) Studies of the sulfosalts of copper. I. Phases and phase relations in the system Cu–As–S. Economic Geology, 66, 901918.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W.H., Nickel, E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 20, 746.CrossRefGoogle Scholar
Nouza, R. (1988) Prognostic Evaluation of Ag-Pb-Zn Mineralization of the Blanice Graben. Unpublished Dissertation Thesis, Faculty of Science, Charles University Prague, 143 pp.Google Scholar
Paar, W.H., Chen, T.T. and Günthe, W. (1978) Extrem silberreicher Freibergit in Pb-Zn-Cu-Erzen des Bergbaues “Knappenstube”, Hochtor, Salzburg. Carinthia II, 168, 3542.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (ϕρZ) procedure for improved quantitative microanalysis. Pp. 104–106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco.Google Scholar
Qu, K., Sima, X., Gu, X., Sun, W., Fan, G., Hou, Z., Ni, P., Wang, D., Yang, Z. and Wang, Y. (2021) Kenoargentotetrahedrite-(Zn), IMA 2020-075. CNMNC Newsletter 59. Mineralogical Magazine, 85, Scholar
Repstock, A., Voudouris, P., Zeug, M., Melfos, V., Zhai, M., Li, H., Kartal, T. and Matuszczak, J. (2016) Chemical composition and varieties of fahlore-group minerals from Oligocene mineralization in the Rhodope area, southern Bulgaria and Northern Greece. Mineralogy and Petrology, 110, 103123.CrossRefGoogle Scholar
Rozhdestvenskaya, I.V., Zayakina, N.V. and Samusikov, V.P. (1993) Crystal structure features of minerals from a series of tetrahedrite-freibergite. Mineralogiceskij Zhurnal, 15, 917 [in Russian].Google Scholar
Samusikov, V.P., and Gamyanin, G.N. (1994) Nomenclature of mineral species of Cu-Ag isomorphous tetrahedrite. 16th IMA General Meeting, Pisa, Italy, 4–9 September 1994, Abstract volume, 363–364.Google Scholar
Sejkora, J., Biagioni, C., Vrtiška, L. and Moëlo, Y. (2020) Zvĕstovite-(Zn), IMA 2020-061. CNMNC Newsletter No. 58. Mineralogical Magazine, 84, Scholar
Sejkora, J., Biagioni, C., Števko, M., Raber, T. and Roth, P. (2021) Argentotetrahedrite-(Zn). IMA 2020-069. CNMNC Newsletter 59. Mineralogical Magazine, 84, Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Škácha, P., Sejkora, J., Plášil, J., and Makovicky, E. (2020) Pošepnýite, a new Hg-rich member of the tetrahedrite group from Příbram, Czech Republic. Journal of Geosciences, 65, 173186.10.3190/jgeosci.308CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Spiridonov, E.M., Sokolova, N.F., Gapeev, A.K., Dashevskaya, D.M., Evstigneeva, T.L., Chvileva, T.N., Demidov, V.G., Balashov, E.P. and Shul'ga, V.I. (1986) A new mineral – argentotennantite. Doklady Akademii Nauk SSSR, 290, 206210.Google Scholar
Velebil, D. (2004) The occurrence of base-metal ores at Zvěstov, SW of Vlašim. Sborník semináře Stříbrná Jihlava 2004, 160162 [in Czech].Google Scholar
Velebil, D., Macek, I., and Soumar, J. (2016) A contribution to knowledge of chemistry of tetrahedrites from the Czech localities: Příbram, Obecnice, Zvěstov, Mníšek pod Brdy, Ratibořské Hory, Stará Vožice, Jáchymov, Kutná Hora and Stříbrná Skalice. Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 24, 132143 [in Czech with English abstract].Google Scholar
Wang, M., Zhang, X., Guo, X., Pi, D. and Yang, M. (2018) Silver-bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China. Mineralogy and Petrology, 112, 85103.CrossRefGoogle Scholar
Weissenbach, C.G.A. von (1831) Ueber die Gehalte der beym sächsischen Bergbau vorkommenden Silbererze. Kalender für den Sächsischen Berg- und Hüttenmann auf das Jahr 1831, 223248.Google Scholar
Welch, M., Stanley, C.J., Spratt, J. and Mills, S.J. (2018) Rozhdestvenskayaite Ag10Zn2Sb4S13, and argentotetrahedrite Ag6Cu4(Fe2+,Zn)2Sb4S13: two Ag-dominant members of the tetrahedrite group. European Journal of Mineralogy, 30, 11631172.CrossRefGoogle Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Wu, P., Gu, X., Qu, K., Yang, H. and Wang, Y. (2021) Argentotetrahedrite-(Hg), IMA 2020-079. In: CNMNC Newsletter 59. Mineralogical Magazine, 85, Scholar
Zachariáš, J. and Hübst, T. (2012) Structural evolution of the Roudný gold deposit, Bohemian Massif: a combination of paleostress analysis and review of historical documents. Journal of Geosciences, 57, 87103.CrossRefGoogle Scholar
Zhdanov, Y.Y., Amuzinskiy, V.A. and Andrianov, N.G. (1992) A natural variety of high-silver fahlerz with a large unit-cell parameter. Doklady Rossiyskoy Akademii Nauk, 326, 337340.Google Scholar
Supplementary material: File

Sejkora et al. supplementary material

Sejkora et al. supplementary material

Download Sejkora et al. supplementary material(File)
File 102 KB