Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-24T05:48:45.941Z Has data issue: false hasContentIssue false

Synthesis of Fe-deficient eudialyte analogues: Relationships between the composition of the reaction system and crystal-chemical features of the products

Published online by Cambridge University Press:  13 January 2023

Tatiana N. Kovalskaya*
Affiliation:
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS), 4 Academician Ossipyan str., Chernogolovka, Moscow District, 142432 Russia
Vera N. Ermolaeva
Affiliation:
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS), 4 Academician Ossipyan str., Chernogolovka, Moscow District, 142432 Russia Vernadsky Institute of Geochemistry and Analytical Chemistry the Russian Academy of Sciences (GEOKHI RAS), 19 Kosygin str., Moscow, 119991 Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics the Russian Academy of Sciences (IPCP RAS) Ac. Semenov avenue 1, Chernogolovka, Moscow region, 142432 Russia
Dmitry A. Varlamov
Affiliation:
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS), 4 Academician Ossipyan str., Chernogolovka, Moscow District, 142432 Russia Institute of Problems of Chemical Physics the Russian Academy of Sciences (IPCP RAS) Ac. Semenov avenue 1, Chernogolovka, Moscow region, 142432 Russia
Georgy A. Kovalskiy
Affiliation:
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS), 4 Academician Ossipyan str., Chernogolovka, Moscow District, 142432 Russia
Egor S. Zakharchenko
Affiliation:
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS), 4 Academician Ossipyan str., Chernogolovka, Moscow District, 142432 Russia
Georgy M. Kalinin
Affiliation:
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS), 4 Academician Ossipyan str., Chernogolovka, Moscow District, 142432 Russia
Korney D. Chaichuk
Affiliation:
D.S. Korzhinskii Institute of Experimental Mineralogy the Russian Academy of Sciences (IEM RAS), 4 Academician Ossipyan str., Chernogolovka, Moscow District, 142432 Russia
*
*Author for correspondence: Tatiana N. Kovalskaya, Email: tatiana76@iem.ac.ru

Abstract

Eudialyte-related compounds have been synthesised hydrothermally at T = 600°C and P = 2 kbar from a stoichiometric mixture of Na2CO3, CaO, Fe2O3, ZrOCl2 and SiO2 using the Na:Ca:Fe:Zr:Si ratios corresponding to the eudialyte end-member Na15Ca6Fe3Zr3Si(Si25O73)(OH)Cl2⋅H2O, in the presence of 1 M aqueous solutions of NaCl and NaF. The synthesis was carried out in platinum ampoules over 10 days. Natural raslakite (a Ca-deficient member of the eudialyte group) was used as a seed and added in amounts corresponding to 2 wt.% of the whole charge. The products were characterised by powder X-ray diffraction, IR and Raman spectroscopy, morphological features, and electron probe microanalyses. In experiments with NaCl, almost pure eudialyte-type compounds were obtained. Synthesis in the presence of a NaF solution resulted in the formation of a F-dominant eudialyte-type compound related to raslakite as the main product and aegirine, vlasovite and lalondeite as by-products. All synthesised eudialyte-type compounds are Zr-rich and Fe-deficient, similar to eudialyte-group minerals from hyperagpaitic rocks related to foyaites. The increased NaCl contents in the reaction system results in increased Ca content in the synthesised eudialyte-related compounds. The crystal-chemical formulae of the synthesised eudialyte-type compounds are derived based on general regularities established earlier for eudialyte-group minerals.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

Associate Editor: Katharina Pfaff

References

Christophe-Michel-Lévy, M. (1961) Reproduction artificielle de quelques minéraux riches en zirconium (zircon, eudialyte, catapléite, elpidite); comparaison avec leurs conditions naturelles de formation. Bulletin de la Société Française de Minéralogie et de Cristallographie, 84, 3, 265269, https://doi.org/10.3406/bulmi.1961.5487.CrossRefGoogle Scholar
Chukanov, N.V., Pekov, I.V., Zadov, A.E., Korovushkin, V.V., Ekimenkova, I.A. and Rastsvetaeva, R.K. (2003) Ikranite, (Na,H3O)15(Ca,Mn,REE)6Fe3+2Zr3(□,Zr)(□,Si)Si24O66(O,OH)6Cl⋅nH2O, and raslakite, Na15Ca3Fe3(Na,Zr)3Zr3(Si,Nb)(Si25O73)(OH,H2O)3(Cl,OH), new eudialyte-group minerals from the Lovizero massif. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 132, 5, 2233 [in Russian].Google Scholar
Chukanov, N.V., Moiseev, M.M., Rastsvetaeva, R.K., Rozenberg, K.A., Zadov, A.E., Pekov, I.V. and Korovushkin, V.V. (2005) Golyshevite (Na,Ca)10Ca9Fe2Zr3NbSi25O72(OH)3(CO3)⋅H2O and mogovidite Na9(Ca,Na)6Ca6Fe2Zr3□Si25O72(CO3)(OH,H2O)4 – new eudialyte-group minerals from hypercalcium pegmatites of Kovdor. Zapiski VMO (Proceedings of the Russian Mineralogist Society), 134, 6, 3646 [in Russian].Google Scholar
Chukanov, N.V., Aksenov, S.M., Pekov, I.V., Belakovskiy, D.I., Vozchikova, S.A. and Britvin, S.N. (2020) Sergevanite, Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3⋅H2O, a new eudialyte-group mineral from the Lovozero alkaline massif, Kola Peninsula. The Canadian Mineralogist, 58, 421436, https://doi.org/10.3749/canmin.2000006.CrossRefGoogle Scholar
Chukanov, N.V., Vigasina, M.F., Rastsvetaeva, R.K., Aksenov, S.M., Mikhailova, Ju.A. and Pekov, I.V. (2022) The evidence of hydrated proton in eudialyte-group minerals based on Raman spectroscopy data. Journal of Raman Spectroscopy, 53, 11881203, https://doi.org/10.1002/jrs.6343.CrossRefGoogle Scholar
Gritsenko, Y.D., Chukanov, N.V., Aksenov, S.M., Pekov, I.V., Varlamov, D.A., Pautov, L.A., Vozchikova, S.A., Ksenofontov, D.A. and Britvin, S.N. (2020) Odikhinchaite, Na9Sr3[(H2O)2Na]Ca6Mn3Zr3NbSi(Si24O72)O(OH)3(CO3)⋅H2O, a new eudialyte-group mineral from the Odikhincha intrusion, Taimyr Peninsula, Russia. Minerals, 10, 1062, https://doi.org/10.3390/min10121062.CrossRefGoogle Scholar
Johnsen, O., Grice, J.D. and Gault, A. (1998) Kentbrooksite from the Kangerdlugssuaq intrusion, East Greenland, a new Mn-REE-Nb-F end-member in a series within the eudialyte group: Description and crystal structure. European Journal of Mineralogy, 10, 207 219, https://doi.org/10.1127/ejm/10/2/0207.CrossRefGoogle Scholar
Johnsen, O., Ferraris, G., Gault, R.A., Grice, J.D., Kampf, A.R. and Pekov, I.V. (2003) Nomenclature of eudialyte-group minerals. The Canadian Mineralogist, 41, 785794, https://doi.org/10.2113/gscanmin.41.3.785.CrossRefGoogle Scholar
Khomyakov, A.P. (1995) Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon Press, Oxford, 223 pp.Google Scholar
Kogarko, L.N., Williams, C.T. and Wooley, A.R. (2002) chemical evolution and petrogenetic implications of loparite in the layered, Agpaitic Lovozero Complex, Kola Peninsula, Russia. Mineralogy and Petrology, 74, 124, https://doi.org/10.1007/s710-002-8213-2.Google Scholar
Mikhailova, Yu.A, Pakhomovsky, Ya.A., Kalashnikova, G.O. and Aksenov, S.M. (2022) Dissolution of the eudialyte-group minerals: Experimental modeling of natural processes. Minerals, 12, 1460, https://doi.org/10.3390/min12111460.CrossRefGoogle Scholar
Moiseev, M.M. and Chukanov, N.V. (2006) Mineralogy of alkaline pegmatites and hydrothermalites of the Kovdor massif. New Data on Minerals, 41, 5670.Google Scholar
Rastsvetaeva, R.K. and Chukanov, N.V. (2020) New data on the isomorphism in eudialyte-group minerals. 2. Crystal-chemical mechanisms of blocky isomorphism at the key sites (a review). Minerals, 10, 720, https://doi.org/10.3390/min10080720.CrossRefGoogle Scholar
Rastsvetaeva, R.K., Chukanov, N.V. and Aksenov, S.M. (2012) Eudialyte-Group Minerals. Nizhny Novgorod State University, Nizhny Novgorod, Russia, 230 pp. [in Russian].Google Scholar
Rastsvetaeva, R.K., Chukanov, N.V., Zaitsev, V.A., Aksenov, S.M. and Viktorova, K.A. (2018) Crystal structure of Cl-deficient analogue of taseqite from Odikhincha Massif. Crystallography Reports, 63, 349357, https://doi.org/10.1134/S1063774518030240.CrossRefGoogle Scholar
Rastsvetaeva, R.K., Chukanov, N.V., Pekov, I.V., Ch, Schäfer. and Van, K.V. (2020) New data on the isomorphism in eudialyte-group minerals. 1. Crystal chemistry of eudialyte-group members with Na incorporated into the framework as a marker of hyperagpaitic conditions. Minerals, 10, 87102, https://doi.org/10.3390/min10070587.CrossRefGoogle Scholar
Rozenberg, K.A., Rastsvetaeva, R.K., Chukanov, N.V. and Verin, I.A. (2005) Crystal structure of golyshevite. Crystallography Reports, 50, 539543, https://doi.org/10.1134/1.1996727.CrossRefGoogle Scholar
Sitarz, M., Handke, M. and Mozgawa, W. (2000) Identification of silicooxygen rings in SiO2 based on IR spectra. Spectrochimica Acta A, 56, 9, 18191823, https://doi.org/10.1016/S1386-1425(00)00241-9.CrossRefGoogle Scholar
Smirnova, T.N., Pekov, I.V., Varlamov, D.A., Kovalskaya, T.N., Bychkov, A.Yu. and Bychkova, Ya.V. (2015) On the chemistry and stages of phase formation processes during the acid decomposition of eudialyte (according to experimental data). Pp. 167170 in: Ontogeny, Phylogeny, System of Mineralogy. Materials of the All-Russian Conference, Miass, Russia [in Russian].Google Scholar
Trofimova, E.Yu., Aleksenskii, A.E., Grudinkin, S.A., Korkin, I.V., Kurdyukov, D.A. and Golubev, V.G. (2011) Effect of tetraethoxysilane pretreatment on synthesis of colloidal particles of amorphous silicon dioxide. Colloid Journal, 73, 546550, https://doi.org/10.1134/s1061933×11040156.CrossRefGoogle Scholar