Skip to main content Accessibility help
×
Home

Pb-Zn and minor U mineralization at Tyndrum, Scotland

Published online by Cambridge University Press:  05 July 2018

Richard A. D. Pattrick
Affiliation:
Department of Geology, University of Manchester, Manchester M13 9PL

Abstract

The Tyndrum Pb-Zn mineralization occurs as veins and vein breccias in NE-SW trending fractures associated with the Tyndrum-Glen-Fyne fault. The major minerals are quartz, galena, and sphalerite with minor chalcopyrite and baryte. Tetrahedrite (sometimes silver-and cadmium-rich), pyrargyrite, marcasite, and pyrite occur as small inclusions (< 100 µm) in the galena-rich veins. Sphalerite formed early in the depositional sequence, mainly in breccias, with increasing amounts of galena and chalcopyrite deposited in the later vein stages of mineralization. Uraniferous veins post-date the main Pb-Zn mineralization and contain uraninite, calcite, baryte, galena, sphalerite, chalcopyrite, argentite, chalcocite, tetrahedrite, and safflorite.

Fluid inclusion studies reveal that the mineralizing solutions contained c.20 wt. % equivalent NaCl + KCl, had an Na/K ratio of 3 : 1 and were boiling during mineral precipitation.

The Tyndrum fault controlled the upward flow of the hydrothermal solutions and its intersection with fractures in quartzites favoured the siting of the veins. The depositional sequence is explained by an increase in temperature during the mineralizing episode. The uraniferous veins may be a late oxidized stage of the main Pb-Zn mineralization.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below.

References

Amcoff, O. (1976) Neues Jahrb. Mineral. Mh. 247-61.Google Scholar
Arnorsson, S. (1978) Contrib. Mineral. Petrol. 66, 21-8.CrossRefGoogle Scholar
Barton, P. B., Bethke, P. M., and Roedder, E. (1977) Econ. Geol. 72, 1-25.CrossRefGoogle Scholar
Bethke, P. M., and Barton, P. B., (1971a) Ibid. 66, 140-63.Google Scholar
Bethke, P. M., and Barton, P. B., (1971b) Am. Mineral. 56, 2034-9.Google Scholar
Bischoff, J. L., and Seyfreid, W. E., Jr. (1978) Am. J. Sci. 278, 838-60.CrossRefGoogle Scholar
Brown, P. R. L., and Ellis, A. J. (1970) Ibid. 269, 97-131.Google Scholar
Bush, P. R. (1980) 4th Australian Geological Congress, Hobart; Abstracts. Geol. Soc. Austral. 5.Google Scholar
Cambi, L., Elli, M., and Tangerini, I. (1966) Chim. Ind. (Milan), 48, 567-75.Google Scholar
Crerar, D. A., and Barnes, H. L. (1976) Econ. Geol. 71, 772-94.CrossRefGoogle Scholar
Darnley, A. G. (1962) Geol. Surv. GB Age Determination Report, 21.Google Scholar
Darnley, A. G., Smith, G. H., Chandler, T. R. D., and Preece, E. R. (1960) Geol. Surv. G.B. Age Determination Report, 13.Google Scholar
Davidson, C. F. (1966) Trans. Inst. Mining Metall. B, 75, 237-41.Google Scholar
Ellis, A. J. (1979) Chem. Geol. 25, 219-26.CrossRefGoogle Scholar
Ellis, A. J. and Mahon, W. A. J. (1977) Chemistry and Geo- thermal Systems. Academic Press, Inc. 392 pp.Google Scholar
Fleischer, M. (1975) Am. Mineral. 60, 489.Google Scholar
Frondel, C. (1958) Systematic mineralogy of uranium and thorium. US Geol. Surv., Bulletin 1064.Google Scholar
Halliday, L. B. (1962) Reports of Surveys at Tyndrum. On file at IGS, Edinburgh.Google Scholar
Harrison, R. K. (1956) Report on the preliminary survey of radioactivity in the Tyndrum mining area. Geol. Surv. GB Atomic Energy Division, Report No. 186.Google Scholar
Hemley, J. J., and Jones, W. R. (1964) Econ. Geol. 59, 539-67.CrossRefGoogle Scholar
Henley, R. W. (1973) Trans. Inst. Mining Metall. B, 82, 18.Google Scholar
Ludwig, K. Z., and Grauch, R. I. (1980) Econ. Geol. 75, 296-302.CrossRefGoogle Scholar
McLennan, S. M., and Taylor, S. R. (1979) Nature, 282, 247-50.CrossRefGoogle Scholar
Odernheimer, F. (1841) Trans. Highland Soc. 7, 541-56.Google Scholar
Orville, P. M. (1963) Am. J. Sci. 261, 201-37.CrossRefGoogle Scholar
Pattrick, R. A. D. (1978) Mineral Mag. 42, 286-8.CrossRefGoogle Scholar
Pattrick, R. A. D. (1981) The vein mineralization at Tyndrum, Scotland, and a study of substitutions in tetrahedrites. Ph.D. thesis, University of Strathclyde.Google Scholar
Pattrick, R. A. D. and Hall, A. J. (1983) Mineral. Mag. 47, 441-51.CrossRefGoogle Scholar
Pattrick, R. A. D., Coleman, M. L., and Russell, M. J. (1983) Mineral. Deposita. 18, 477-85.CrossRefGoogle Scholar
Petruk, W. (1971) Can. Mineral. 11, 196-231.Google Scholar
Philips, W. J. (1972) J. Geol. Soc. Lond. 128, 337-55.CrossRefGoogle Scholar
Raybould, J. G. (1974) Trans. Inst. Mining Metall. B, 88, 112-19.Google Scholar
Rich, R. A., Holland, H. D., and Petersen, U. (1977) Hydrothermal Uranium Deposits. Elsevier, 264 pp.Google Scholar
Richardson, S. W., and Powell, R. (1976) Scott. J. Geol. 12, 237-68.CrossRefGoogle Scholar
Riley, J. F. (1974) Mineral Deposita. 9, 117-24.CrossRefGoogle Scholar
Roedder, E., and Bodnar, R. J. (1980) Ann. Rev. Earth Planet. Sci. 8, 263-301.CrossRefGoogle Scholar
Russell, M. J. (1978) Trans. Inst. Mining Metall. B, 87, 167-71.Google Scholar
Russell, M. J. (1983) In Sediment Hosted Stratiform Lead-Zinc Deposits (Sangster, D. F., ed.). Short Course Handbook 8, MAC, 251-82.Google Scholar
Russell, M. J. and Samson, I. M. (1982) MDSG Meeting, University of Strathclyde, Abstracts, 4.Google Scholar
Russell, M. J., Solomon, M., and Walshe, J. L. (1981) Mineral. Deposita. 16, 113-27.CrossRefGoogle Scholar
Rye, R. O., and Haffty, J. (1969) Econ. Geol. 69, 468 81.Google Scholar
Sato, T. (1973) Geochem. J. 7, 245-70.CrossRefGoogle Scholar
Sawkins, F. J. (1969) Econ. Geol. 65, 613-17.CrossRefGoogle Scholar
Senior, A., and Leake, B. E. (1978) J. Petrol. 19, 584825.CrossRefGoogle Scholar
Seyfreid, W. E., Jr., and Bischoff, J. F. (1979) Geochim. Cosmochim. Acta, 43, 1937-49.CrossRefGoogle Scholar
Steacy, H. R., and Kaiman, S. (1978) In Uranium Deposits. Their Mineralogy and Origin (Kimberley, M. M., ed.). Short Course Handbook, 3, MAC 107 39.Google Scholar
Steiner, A. (1970) Mineral. Mag. 37, 916-22.CrossRefGoogle Scholar
Thost, C. H. G. (1860) Proc. Geol. Soc. 421-8.Google Scholar
White, D. E., Hern, J. D., and Waring, G. A. (1963) U.S. Geol. Surv. Prof. pap. 440-F.Google Scholar
Wilson, G. V., and Flett, D. S. (1921) The lead, zinc, copper and nickel ores of Scotland. Mem. Geol. Surv. Scotland. Special Report on the mineral resources of Great Britain, 17.Google Scholar
Wilson, J. S. G., and Cadell, M. (1884) R. Phys. Soc. Edinb. 8, 189207.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between 05th July 2018 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-87htd Total loading time: 0.323 Render date: 2021-01-26T16:35:25.929Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pb-Zn and minor U mineralization at Tyndrum, Scotland
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Pb-Zn and minor U mineralization at Tyndrum, Scotland
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Pb-Zn and minor U mineralization at Tyndrum, Scotland
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *