Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T21:05:14.676Z Has data issue: false hasContentIssue false

Crystallization behaviour of the (Mn,Ca)CO3 solid solution in silica gel: nucleation, growth and zoning phenomena

Published online by Cambridge University Press:  05 July 2018

D. Katsikopoulos*
Affiliation:
Departamento de Geología, Universidad de Oviedo, C/ Jesús Arias de Velasco, s/n, 33005 Oviedo, Spain
Á. Fernández-González
Affiliation:
Departamento de Geología, Universidad de Oviedo, C/ Jesús Arias de Velasco, s/n, 33005 Oviedo, Spain
M. Prieto
Affiliation:
Departamento de Geología, Universidad de Oviedo, C/ Jesús Arias de Velasco, s/n, 33005 Oviedo, Spain

Abstract

The nucleation and growth behaviour of the (Mn,Ca)CO3 solid solution from aqueous solutions in silica hydrogel were studied at 25ºC. In order to obtain different levels of supersaturation at nucleation, experiments were carried out in diffusion columns of different lengths. Zoning phenomena, compositional heterogeneity and morphological modifications of the crystals obtained were examined by electron microprobe and scanning electron microscopy and microanalyses. The large difference between the solubility of calcite (CaCO3) and rhodochrosite (MnCO3) implies a significant preferential partitioning of Mn towards the solid. The distribution of Mn2+ and Ca2+ ions between the aqueous and solid phase demonstrates that at elevated supersaturation, this preferential partitioning is softened. The morphologies of experimentally grown individuals show a clear dependence on the composition of the parent solution. Crystals obtained from aqueous solutions with large Mn contents exhibit a relatively sharp concentric zoning along the equatorial sections. On these bases, the roles of multiple kinetic and thermodynamic factors during nucleation and growth are also discussed. Finally, an X-ray diffraction analysis of the precipitates provided no evidence of the formation of the dolomite-type ordered kutnahorite [CaMn(CO3)2] in any of the experimentalsets.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, J.D., Brown, D.S. and Novo-Gradac, K.J. (1990) MINTEQA2/PRODEFA2. A geochemical assessment model for environmental systems-version 3.0 user's manual: Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, Georgia, USA, 106 pp.Google Scholar
Andara, A., Heasman, D.M., Fernádez-González, A. and Prieto, M. (2005) Characterization and crystallization of Ba(SO4,SeO4) solid solution. Crystal Growth and Design, 5, 1371 — 1378.CrossRefGoogle Scholar
Appelo, C.A. and Postma, D. (2005) Geochemistry, Groundwater and Pollution (2nd edition). A.A. Balkema Publishers, Leiden, The Netherlands, 649 pp.Google Scholar
Astilleros, J.M., Pina, C.M., Fernádez-Díaz, L. and Putnis, A. (2002) Molecular-scale surface processes during the growth of calcite in the presence of manganese. Geochimica et Cosmochima Acta, 66, 3177—3189.CrossRefGoogle Scholar
Bamforth, S.M., Manning, D.A., Singleton, I., Younger, P.L. and Johnson, K.L. (2006) Manganese removal from mine waters — investigating the occurrence and importance of manganese carbonates. Applied Geochemistry, 21, 1274—1287.CrossRefGoogle Scholar
Bilinski, H., Kwokal, Z. and Branica, M. (1996) Formation of some manganese minerals from ferromanganese factory waste disposed in the Krka River Estuary. Water Research, 30, 495—500.CrossRefGoogle Scholar
Böttcher, M.E. (1997) The transformation of aragonite to MnxCa(1—x)CO3 solid-solutions at 20°C: An experimental study. Marine Chemistry, 57, 97—106.CrossRefGoogle Scholar
Böttcher, M.E. (1998) Manganese (II) partitioning during experimental precipitation of rhodochrosite-calcite solid solutions from aqueous solutions. Marine Chemistry, 62, 287—297.CrossRefGoogle Scholar
Boynton, W.V. (1971) Thermodynamics of calcite- rhodochrosite solid solutions. PhD thesis, Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA, 156 pp.Google Scholar
Brand, U. and Veizer, J. (1980) Chemical diagenesis of a multicomponent carbonate system — 1. Journal of Sedimentary Petrology, 50, 1219—1236.Google Scholar
Calvert, S.E. and Pedersen, T.F. (1996) Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Economic Geology and the Bulletin of the Society of Economic Geologists, 91, 36—47.CrossRefGoogle Scholar
Capobianco, C. and Navrotsky, A. (1987) Solid-solution thermodynamics in CaCO3-MnCO3. American Mineralogist, 72, 312—318.Google Scholar
DeCapitani, C. and Peters, T. (1981) The solvus in the system manganese(II) carbonate-calcium carbonate. Contributions to Mineralogy and Petrology, 76, 394—400.Google Scholar
Fernádez-Díaz, L., Putnis, A., Prieto, M. and Putnis, C.V. (1996) The role of magnesium in the crystallization of calcite and aragonite in a porous medium. Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, 66, 482—491.Google Scholar
Fernádez-Díaz, L., Astilleros, J.M. and Pina, C. (2006) The morphology of calcite crystals grown in a porous medium doped with divalent cations.Chemical Geology, 225, 314—321.Google Scholar
Fernádez-González, A., Prieto, M., Putnis, A. and López-Andrés, S. (1999) Concentric zoning patterns in crystallizing (Cd,Ca)CO3 solid solutions from aqueous solutions. Mineralogical Magazine, 63, 331—343.Google Scholar
Fernádez-González, A., Andara, A., Alia, J.M. and Prieto, M. (2006) Miscibility in the CaSO4.2H2O- CaSeO4.2H2O system: Implications for the crystallization and dehydration behaviour. Chemical Geology, 225, 256—265.Google Scholar
Fernádez-González, A., Pedreira, V.B. and Prieto, M. (2008) Crystallization of zoned (Ba,Pb)SO4 single crystals from aqueous solution in silica gel. Journal of Crystal Growth, 310, 4616—4622.Google Scholar
Friedl, G., Wehrli, B. and Manceau, A. (1997) Solid phases in the cycling of manganese in eutrophic lakes: new insights from EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 61, 275—290.CrossRefGoogle Scholar
Fubini, B. and Stone, F. (1983) Physicochemical properties of manganese carbonate-calcium carbonate and manganese oxide-calcium oxide solid solutions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 79, 1215 — 1227.Google Scholar
Glynn, P. (2000) Solid-solution solubilities and thermodynamics: Sulfates, carbonates and halides. Pp. 481 — 511 in: Sulfate Minerals (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors). Reviews in Mineralogy and Geochemistry, 40, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Glynn, P.D. and Readon, E.J. (1990) Solid solution- aqueous solution equilibria: thermodynamic theory and representation. American Journal of Science, 290, 164—201.CrossRefGoogle Scholar
Goldsmith, J.R. and Graf, D.L. (1957) The system CaO-MnO-CO2: Solid solution and decomposition reactions. Geochimica et Cosmochimica Acta, 11, 301—334.CrossRefGoogle Scholar
Guggenheim, E.A. (1937) The theoretical basis of Raoult's law. Transactions of the Faraday Society, 33, 151 — 159.CrossRefGoogle Scholar
Henisch, H. and Garcia-Ruiz, J. (1986) Crystal growth in gels and Liesegang ring formation. I. Diffusion relationships. Journal of Crystal Growth, 75, 195— 202.CrossRefGoogle Scholar
Jakobsen, R. and Postma, D. (1989) Formation and solid solution behavior of calcian-rhodochrosites in marine muds of the Baltic deeps. Geochimica et Cosmochimica Acta, 53, 2639—2648.CrossRefGoogle Scholar
Jensen, D.L., Boddum, J.K., Tjell, J.C. and Christensen, T.H. (2002) The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments. Applied Geochemistry, 17, 503—511.CrossRefGoogle Scholar
Katsikopoulos, D., Fermndez-Gonzalez, A. and Prieto, M. (2008a) Co-crystallization of Co(II) with calcite: Implications for the mobility of cobalt in aqueous environments. Chemical Geology, 254, 87—100.Google Scholar
Katsikopoulos, D., Fernandez-Gonzalez, A. and Prieto, M. (2008b) Crystallization of the (Cd,Ca)CO3 solid solution in double diffusion systems: the partitioning behavior of Cd2+ in calcite at different supersaturation rates. Mineralogical Magazine, 72, 433—436.CrossRefGoogle Scholar
Kulik, D.A., Kersten, M., Heiser, U. and Neumann, T. (2000) Application of Gibbs energy minimization to model early-diagenetic solid-solution aqueous-solution equilibria involving authigenic rhodochrosites in anoxic Baltic Sea sediments. Aquatic Geochemistry, 6, 147—199.CrossRefGoogle Scholar
Large, R., Allen, R., Blake, M. and Herrmann, W. (2001) Hydrothermal alteration and volatile element halos for the Rosebery K Lens volcanic-hosted massive sulfide deposit, Western Tasmania. Economic Geology and the Bulletin of the Society of Economic Geologists, 96, 1055 — 1072.CrossRefGoogle Scholar
Lepland, A. and Stevens, R.L. (1998) Manganese authigenesis in the Landsort Deep, Baltic Sea. Marine Geology, 151, 1—25.CrossRefGoogle Scholar
Lind, C.J. and Hem, J.D. (1993) Manganese minerals and associated fine particulates in the streambed of Pinal Creek, Arizona, U.S.A.: a mining-related acid drainage problem. Applied Geochemistry, 8, 67—80.CrossRefGoogle Scholar
Lippmann, F. (1980) Phase diagrams depicting aqueous solubility of binary mineral systems. Neues Jahrbuch für Mineralogie, 139, 1 —25.Google Scholar
Lloyd, G. (1987) Atomic number and crystallographic contrast images with the SEM: a review of back- scattered electron techniques. Mineralogical Magazine, 51, 3—19.CrossRefGoogle Scholar
McBeath, M.K., Rock, P.A., Casey, W.H. and Mandell, G.K. (1998) Gibbs energies of formation of metal- carbonate solid solutions: Part 3. The CaxMn1—xCO3 system at 298 K and 1 bar. Geochimica et Cosmochimica Acta, 62, 2799—2808.CrossRefGoogle Scholar
Mucci, A. (2004) The behavior of mixed Ca-Mn carbonates in water and seawater: Controls of manganese concentrations in marine porewaters. Aquatic Geochemistry, 10, 139—169.CrossRefGoogle Scholar
Mullin, J.W. (1993) Crystallization. Butterworth- Heinemann, Oxford, UK.Google Scholar
Nyame, F., Beukes, N., Kase, K. and Yamamoto, M. (2003) Compositional variations in manganese carbonate micronodules from the Lower Proterozoic Nsuta deposit, Ghana: product of authigenic precipitation or post-formational diagenesis? Sedimentary Geology, 154, 159—175.CrossRefGoogle Scholar
Oelkers, E. (1996) Physical and chemical properties of rocks and fluids for chemical mass transfer calculations. Pp. 131 — 191 in: Reactive Transport in Porous Media (P.C. Lichtner, C.I. Steefel, and E.H. Oelkers, editors). Reviews in Mineralogy 34, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Parkhurst, D.L. and Appelo, C.A. (2003) User's guide to PHREEQC (Version 2) — A computer program for Speciation, Batch-Reaction, One-Dimensional Transport and Inverse Geochemical Calculations. U.S. Geological Survey Water Resources Investigations Report, Washington, D.C. Google Scholar
Plummer, L. and Busenberg, E. (1982) The solubilities of calcite, aragonite, and vaterite in carbon dioxide- water solutions between 0 and 90° C, and an evaluation of the aqueous model for the system calcium carbonate-carbon dioxide-water. Geochimica et Cosmochimica Acta, 46, 1011 — 1040.CrossRefGoogle Scholar
Prieto, M., Garcia-Ruiz, J.M. and Amoros, J.L. (1981) Growth of calcite crystals with non-singular faces. Journal of Crystal Growth, 52, 864—867.CrossRefGoogle Scholar
Prieto, M., Putnis, A., Fernandez-Diaz, L. and Lopez- Andres, S. (1994) Metastability in diffusing-reacting systems. Journal of Crystal Growth, 142, 225—235.CrossRefGoogle Scholar
Prieto, M., Fernandez-Gonzalez, A., Putnis, A. and Fernandez-Diaz, L. (1997) Nucleation, growth, and zoning phenomena in crystallizing (Ba,Sr)CO3, Ba(SO4,CrO4), (Ba,Sr)SO4, and (Cd,Ca)CO3 solid solutions from aqueous solutions. Geochimica et Cosmochimica Acta, 61, 3383—3397.CrossRefGoogle Scholar
Prieto, M., Fernaindez-Gonzailez, A., Becker, U. and Putnis, A. (2000) Computing Lippmann diagrams from direct calculation of mixing properties of solid solutions: application to the barite-celestite system. Aquatic Geochemistry, 6, 133 — 146.CrossRefGoogle Scholar
Prieto, M., Fernandez-Gonzalez, A. and Martin-Diaz, R. (2002) Sorption of chromate ions diffusing through barite-hydrogel composites: implications for the fate and transport of chromium in the environment. Geochimica et Cosmochimica Acta, 66, 783—795.CrossRefGoogle Scholar
Putnis, A., Prieto, M. and Fernandez-Diaz, L. (1995) Fluid supersaturation and crystallization in porous media. Geological Magazine, 132, 1 — 13.CrossRefGoogle Scholar
Redlich, O. and Kister, A. (1948) Thermodynamics of nonelectrolytic solutions. Algebraic representation of thermodynamic properties and the classification of solutions. Journal of Industrial and Engineering Chemistry, 40, 345—348.Google Scholar
Reeder, R.J. (1986) Zoning types and their origins in sedimentary carbonate minerals. Pp. 740—752 in: Geochemistry of the Earth's Surface (R. Rodriguez and Y. Tardy, editors). Consejo Superior Investigaciones Cientificas, Centre National de la Recherche Scientifique.Google Scholar
Reeder, R.J., Fagioly, R.O. and Meyers, W. (1990) Oscillatory zoning of Mn in solution-grown calcite crystals. Earth Science Reviews, 29, 39—46.CrossRefGoogle Scholar
Ten Have, T. and Heijinen, W. (1985) Cathodoluminescence activation and zonation in carbonate rocks: An experimental approach. Geologie en Mijnbouw, 64, 297—310.Google Scholar
Wada, N., Yamashita, K. and Umegaki, T. (1998) Effects of silver, aluminum, and chromium ions on the polymorphic formation of calcium carbonate under conditions of double diffusion. Journal of Colloid and Interface Science, 201, 1—6.Google Scholar
Wang, Y. and Merino, E. (1992) Dynamic model of oscillatory zoning of trace elements in calcite: Double layer, inhibition, and self-organization. Geochimica et Cosmochimica Acta, 56, 587—596.Google Scholar