Hostname: page-component-5d59c44645-l48q4 Total loading time: 0 Render date: 2024-02-26T05:16:24.098Z Has data issue: false hasContentIssue false

The crystal structure of arsenopalladinite, Pd8As2.5Sb0.5, and its relation to mertieite-II, Pd8Sb2.5As0.5

Published online by Cambridge University Press:  28 August 2020

Oxana V. Karimova*
Affiliation:
Institute of Geology of Ore Deposits Russian Academy of Sciences, Staromonetny 35, 119017Moscow, Russia
Andrey A. Zolotarev
Affiliation:
Institute of Earth Science, Saint-Petersburg State University, University Emb. 7/9, 199034Saint-Petersburg, Russia
Bo S. Johanson
Affiliation:
Geological Survey of Finland, P.O. Box 96, FIN 02151Espoo, Finland
Tatiyana L. Evstigneeva
Affiliation:
Institute of Geology of Ore Deposits Russian Academy of Sciences, Staromonetny 35, 119017Moscow, Russia
*
*Author for correspondence: Oxana V. Karimova, Email: oxana.karimova@gmail.com

Abstract

The crystal structure of arsenopalladinite, Pd8As2.5Sb0.5, from the Kaarreoja River, Inari commune, Finnish Lapland, Finland, was solved to R1 = 0.0451 on the basis of single-crystal X-ray diffraction data. The mineral is triclinic, space group P$\bar{1}$. The unit-cell parameters are: a = 7.3344(7), b = 7.3870(8), c = 7.5255(7) Å, α = 98.869(8), β = 102.566(8), γ = 119.096(11)°, V = 331.19(7) Å3 and Z = 2. The crystal structure of arsenopalladinite consists of an alternation of layers made by pnictogen (As, Sb) and layers made by palladium atoms stacked along the c axis. Arsenic and (As, Sb) nets exhibit a triangular topology (A and D nets), whereas palladium layers show triangular or pentagon–triangular nets (B and C nets). The unit-cell contains 6 layers, with the ABCDCBA stacking sequence. Although arsenopalladinite shows characteristics very similar (nets of the same topology) to the closely-related mineral mertieite-II, Pd8Sb2.5As0.5, it has a different stacking sequence.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: František Laufek

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.Google Scholar
Bindi, L. (2010) Atheneite, [Pd2][As0.75Hg0.25], from Itabira, Minas Gerais, Brazil: crystal structure and revision of the chemical formula. The Canadian Mineralogist, 48, 11491155.CrossRefGoogle Scholar
Cabri, L.J. (1981) The platinum-group minerals. Pp. 83150 in: The Platinum Group Elements: Mineralogy, Geology, Recovery (Cabri, L.J., editor). Canadian Institute of Mining Metallurgy, S23. CIM, Quebec, CanadaGoogle Scholar
Cabri, L.J. (2002) The platinum-group minerals. In: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements (Cabri, L.J., editor). Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 54, 70–71. CIM, Quebec, Canada.Google Scholar
Cabri, L.J. and Laflamme, J.H.G. (1979) Mineralogy of Samples from the Lac Des Iles Area, Ontario. CANMET Report, pp. 79–27.Google Scholar
Cabri, L.J., Clark, A.M. and Chen, T.T. (1977) Arsenopalladinite from Itabira, Brazil, and from the Stillwater Complex, Montana. The Canadian Mineralogist, 15, 7073.Google Scholar
Clark, A.M., Criddle, A.J. and Fejer, E.E. (1974) Palladium arsenide-antimonides from Itabira, Minas Gerais, Brazil. Mineralogical Magazine, 39, 528543.CrossRefGoogle Scholar
Claringbull, G.F. and Hey, M. H. (1957) Arsenopalladinite (Pd3As) a new mineral from Itabira, Brazil. Mineralogical Magazine, 31, 237.Google Scholar
Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849854.CrossRefGoogle Scholar
Karimova, O.V., Grokhovskaya, T.L., Zolotarev, A.A. and Gurzhiy, V.V. (2016) Crystal structure refinements of isomertieite, Pd11Sb2As2, and tornroosite, Pd11As2Te2. The Canadian Mineralogist, 54, 511517.CrossRefGoogle Scholar
Karimova, O.V., Zolotarev, A.A., Evstigneeva, T.L. and Johanson, B.S. (2018) Mertieite-II, Pd8Sb2.5As0.5, crystal-structure refinement and formula revision. Mineralogical Magazine, 82(S1), S247S257.CrossRefGoogle Scholar
Marsh, R.E. (1994) The centrosymmetric-noncentrosymmetric ambiguity: some more examples. Acta Crystallographica, 50, 450455.CrossRefGoogle Scholar
Matkovic, T. and Schubert, K. (1978) Kristallstruktur von Pd5As und Pd5Ge. Journal of the Less Common Metals, 58, 16.CrossRefGoogle Scholar
Pearson, W.B. (1972) The Crystal Chemistry and Physics of Metals and Alloys. Wiley–Interscience. New York. 806 pp.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, Section A, A71, 38.CrossRefGoogle Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica, Section C, C71, 38.Google Scholar
Wolff, P.M. (2005) Reduced bases. Pp. 750755 in: International Tables for Crystallography, Volume A (Hahn, Th., editor). Springer.Google Scholar
Wopersnow, W. and Schubert, K. (1976) Kristallstruktur von Pd8Sb3. Journal of the Less Common Metals, 48, 7987.CrossRefGoogle Scholar
Wopersnow, W. and Schubert, K. (1977) Kristallstruktur von Pd20Sb7 und Pd20Te7. Journal of the Less Common Metals, 51, 3544.CrossRefGoogle Scholar
Supplementary material: File

Karimova et al. Supplementary Materials

Karimova et al. Supplementary Materials

Download Karimova et al. Supplementary Materials(File)
File 178 KB