Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T01:07:07.725Z Has data issue: false hasContentIssue false

Crystal chemistry of natural layered double hydroxides. 5. Single-crystal structure refinement of hydrotalcite, [Mg6Al2(OH)16](CO3)(H2O)4

Published online by Cambridge University Press:  25 July 2018

Elena S. Zhitova*
Affiliation:
Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia
Sergey V. Krivovichev
Affiliation:
Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Apatity, Russia
Igor Pekov
Affiliation:
Department of Mineralogy, Faculty of Geology, Moscow State University, Moscow, Russia
H. Christopher Greenwell
Affiliation:
Department of Earth Sciences, Durham University, Durham, UK, DH1 3LE
*
*Author for correspondence: Elena S. Zhitova, Email: zhitova_es@mail.ru

Abstract

Hydrotalcite, ideally [Mg6Al2(OH)16](CO3)(H2O)4, was studied in samples from Dypingdal, Snarum, Norway (3R and 2H), Zelentsovskaya pit (2H) and Praskovie–Evgenievskaya pit (2H) (both Southern Urals, Russia), Talnakh, Siberia, Russia (3R), Khibiny, Kola, Russia (3R), and St. Lawrence, New York, USA (3R and 2H). Two polytypes, 3R and 2H (both ‘classical’), were confirmed on the basis of single-crystal and powder X-ray diffraction data. Their chemical composition was studied by electron-microprobe analysis, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The crystal structure of hydrotalcite-3R was solved by direct methods in the space group R$ {\bar 3} $m on three crystals (two data collections at 290 K and one at 120 K). The unit-cell parameters are as follows (290/290/120 K): a = 3.0728(9)/3.0626(3)/3.0617(4), c = 23.326(9)/23.313(3)/23.203(3) Å and V = 190.7(1)/189.37(4)/188.36(4) Å3. The crystal structures were refined on the basis of 304/150/101 reflections to R1 = 0.075/0.041/0.038. Hydrotalcite-2H crystallises in the P63/mmc space group; unit-cell parameters for two crystals are (data collection at 290 K and 93 K): a = 3.046(1)/3.0521(9), c = 15.447(6)/15.439(4) Å, V = 124.39(8)/124.55(8) Å3. The crystal structures were refined on the basis of 160/142 reflections to R1 = 0.077/0.059. This paper reports the first single-crystal structure data on hydrotalcite. Hydrotalcite distribution in Nature, diagnostic features, polytypism, interlayer topology and localisation of M2+M3+ cations within metal hydroxide layers are discussed.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony Kampf

References

Aimoz, L., Taviot-Guého, C., Churakov, S.V., Chukalina, M., Dähn, M., Curti, E., Bordet, P., and Vespa, M. (2012) Anion and cation order in iodide-bearing Mg/Zn–Al layered double hydroxides. The Journal of Physical Chemistry, 116, 54605475.Google Scholar
Allmann, R. (1968) The crystal structure of pyroaurite. Acta Crystallographica, B24, 972977.Google Scholar
Allmann, R. (1977) Refinement of the hybrid layer structure [Ca2Al(OH)6]+ [½SO4·3H2O]. Neues Jahrbuch für Mineralogie, Monatshefte, 1977, 136144.Google Scholar
Allmann, R. and Jepsen, H.P. (1969) Die struktur des Hydrotalkits. Neues Jahrbuch für Mineralogie, Monatshefte, 1969, 544551.Google Scholar
Allmann, R. and Lohse, H.-H. (1966) Die Struktur des Hydrotalkits. Neues Jahrbuch für Mineralogie, Monatshefte, 1966, 161180.Google Scholar
Aminoff, G. and Broomé, B. (1931) Contribution to the knowledge of the mineral pyroaurite. Kungliga Svenska Vetenskapsakademiens Handlingar, 9, 2348.Google Scholar
Arakcheeva, A.V., Pushcharovskii, D.Yu., Atencio, D. and Lubman, G.U. (1996) Crystal structure and comparative crystal chemistry of Al2Mg4(OH)12(CO3)×3H2O, a new mineral from the hydrotalcite–manasseite group. Crystallography Reports, 41, 972981.Google Scholar
Bellotto, M., Rebours, B., Clause, O., Lynch, J., Bazin, D. and Elkaim, E. (1996) A reexamination of hydrotalcite crystal chemistry. The Journal of Physical Chemistry, 100, 85278534.Google Scholar
Bonaccorsi, E., Merlino, S. and Orlandi, P. (2007) Zincalstibite, a new mineral, and cualstibite: Crystal chemical and structural relationships. American Mineralogist, 92, 198203.Google Scholar
Britto, S. and Kamath, P.V. (2009) Structure of bayerite-based lithium–aluminum layered double hydroxides (LDHs): observation of monoclinic symmetry. Inorganic Chemistry, 48, 1164611654.Google Scholar
Britto, S., Thomas, G.S., Kamath, P.V. and Kannan, S. (2008) Polymorphism and structural disorder in the carbonate containing Layered Double Hydroxides of Al and Li. The Journal of Physical Chemistry, C112, 95109515.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for proceedings the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Bruker-AXS (2014) APEX2. Version 2014.11-0. Madison, Wisconsin, USA.Google Scholar
Chao, G.Y. and Gault, R.A. (1997) Quintinite-2H, quintinite-3T, charmarite-2H, charmarite-3T and caresite-3T, a new group of carbonate minerals related to the hydrotalcite/manasseite group. The Canadian Mineralogist, 35, 15411549.Google Scholar
Cocheci, L., Barvinschi, P., Pode, R., Popovici, E. and Seftel, E.M. (2010) Structural characterization of some Mg/Zn-Al type hydrotalcites prepared for chromate sorption from wastewater. Chemical Bulletin of “Politehnica” of Timisoara, Romania, 55, 4045.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1996) The crystal structure of shigaite, [AlMn2(OH)6]3(SO4)2 Na(H2O)6{H2O}6, a hydrotalcite-group mineral. The Canadian Mineralogist, 34, 9197.Google Scholar
Drits, V.A. and Bookin, A.S. (2001) Crystal structure and X-ray identification of layered double hydroxides. Pp. 39–92 in: Layered Double Hydroxides: Present and Future (Rives, V., editor). Nova Science Publishers Inc., New York.Google Scholar
Evans, D.G. and Slade, R.C.T. (2006) Structural aspects of layered double hydroxides. Pp. 187 in: Layered Double Hydroxides (Duan, X. and Evans, D.G., editors). Structure and Bonding 119. Springer, Berlin.Google Scholar
Frondel, C. (1941) Constitution and polymorphism of the pyroaurite and sjögrenite groups. American Mineralogist, 26, 295315.Google Scholar
Frost, R.L., Martens, W., Ding, Z. and Kloprogge, J.T. (2003) DSC and high-resolution TG of synthesized hydrotalcites of Mg and Zn. Journal of Thermal Analysis and Calorimetry, 71, 429438.Google Scholar
Frost, R.L., Spratt, H.J. and Palmer, S.L. (2009) Infrared and near-infrared spectroscopic study of synthetic hydrotalcites with variable divalent/trivalent cationic ratios. Spectrochimica Acta A, 72, 984988.Google Scholar
Hansen, H.C.B. and Koch, C.B. (1996) Local ordering of chromium(III) in trioctahedral hydroxide sheets of stichtite studied by ion exchange chromatography. Clay Minerals, 31, 5361.Google Scholar
Hernandez-Moreno, M.J., Ulibarri, M.A., Rendon, J.L. and Serna, C.J. (1985) IR characteristics of hydrotalcite-like compounds. Physics and Chemistry of Minerals, 12, 3438.Google Scholar
Hochstetter, C. (1842) Untersuchung über die zusammensetzung einiger mineralien. Journal für Praktische Chemie, 27, 375378.Google Scholar
Hofmeister, W. and Von Platen, H. (1992) Crystal chemistry and atomic order in brucite-related double-layer structures. Crystallography Reviews, 3, 326.Google Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2003) The crystal structure of nikischerite, NaFeAl3(SO4)2(OH)18(H2O)12, a mineral of the shigaite group. The Canadian Mineralogist, 41, 7982.Google Scholar
Ingram, L. and Taylor, H.F.W. (1967) The crystal structures of sjögrenite and pyroaurite. Mineralogical Magazine, 36, 465479.Google Scholar
Ivanov, O.K. and Aizikovich, A.N. (1980) Manasseite from Kusinskoe deposit. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 109, 479483 [in Russian].Google Scholar
Kanezaki, E. (1998) Effect of atomic ratio Mg/Al in layers of Mg and Al Layered double hydroxide on thermal stability of hydrotalcite-like layered structure by means of in situ high temperature powder X-ray diffraction. Materials Research Bulletin, 33, 773778.Google Scholar
Kloprogge, J.T., Wharton, D., Hickey, L. and Frost, R.L. (2002) Infrared and Raman study of interlayer anions CO32−, NO3, SO42− and ClO4 in Mg/Al-hydrotalcite. American Mineralogist, 87, 623629.Google Scholar
Kloprogge, J.T. (editor) (2005) The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides. CMS Workshop Lectures, vol. 13 (J.T. Kloprogge, editor). The Clay Mineral Society, Aurora, USA.Google Scholar
Kolitsch, U., Giester, G. and Pippinger, T. (2013) The crystal structure of cualstibite-1M (formerly cyanophyllite), its revised chemical formula and its relation to cualstibite-1T. Mineralogy and Petrology, 107, 171178.Google Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Y. (2010 a) Crystal chemistry of natural layered double hydroxides. 1. Quintinite-2H-3c from the Kovdor alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 74, 821832.Google Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Yu. (2010 b) Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M: First evidence of a monoclinic polytype in M2+-M3+ layered double hydroxides. Mineralogical Magazine, 74, 833840.Google Scholar
Krivovichev, S.V., Antonov, A.A., Zhitova, E.S., Zolotarev, A.A., Krivovichev, V.G. and Yakovenchuk, V.N. (2012) Quintinite-1M from Bazhenovskoe deposit (Middle Ural, Russia): crystal structure and properties. Bulletin of Saint-Petersburg State University, Ser. Geology and Geography, 7, 39 [in Russian].Google Scholar
Liao, L., Zhao, N. and Xia, Z. (2012) Hydrothermal synthesis of Mg–Al layered double hydroxides (LDHs) from natural brucite and Al(OH)3. Materials Research Bulletin, 47, 38973901.Google Scholar
Marappa, S. and Kamath, P.V. (2015) Structure of the carbonate-intercalated Layered Double Hydroxides: A reappraisal. Industrial and Engineering Chemistry Research, 54, 1107511079.Google Scholar
Mills, S.J., Whitfield, P.S., Wilson, S.A., Woodhouse, J.N., Dipple, G.M., Raudsepp, M. and Francis, C.A. (2011) The crystal structure of stichtite, re-examination of barbertonite, and the nature of polytypism in MgCr hydrotalcites. American Mineralogist, 96, 179187.Google Scholar
Mills, S.J., Christy, A.G., Génin, J-M.R., Kameda, T. and Colombo, F. (2012 a) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.Google Scholar
Mills, S.J., Christy, A.G., Kampf, A.R., Housley, R.M., Favreau, G., Boulliard, J–C. and Bourgoin, V. (2012 b) Zincalstibite-9R: the first nine-layer polytype with the layered double hydroxide structure-type. Mineralogical Magazine, 76, 13371345.Google Scholar
Mills, S.J., Kampf, A.R., Housley, R.M., Favreau, G., Pasero, M., Biagioni, C., Merlino, S., Berbain, C. and Orlandi, P. (2012 c) Omsite, (Ni,Cu)2Fe3+(OH)6[Sb(OH)6], a new member of the cualstibite group from Oms, France. Mineralogical Magazine, 76, 13471354.Google Scholar
Mills, S.J., Christy, A.G. and Schmitt, R.T. (2016) The creation of neotypes for hydrotalcite. Mineralogical Magazine, 80, 10231029.Google Scholar
Moroz, T.N. and Arkhipenko, D.K. (1991) The crystal chemical study of natural hydrotalcites. Soviet Geology and Geophysics, 2, 5258.Google Scholar
Mumpton, F.A., Jaffe, H.W. and Thompson, C.S. (1965) Coalingite, a new mineral from the New Idria serpentinite, Fresno and San Benito Counties, California. American Mineralogist, 50, 18931913.Google Scholar
Panikorovskii, T.L., Zhitova, E.S., Krivovichev, S.V., Zolotarev, A.A., Britivn, S.N., Yakovenchuk, V.N. and Krzhizhanovskaya, M.G. (2015) Thermal «memory effect» in quintinite polytypes-2H, -3R, and -1M. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 144, 109119 [in Russian].Google Scholar
Paush, I., Lohse, H.-H., Schurmann, K. and Allmann, R. (1986) Synthesis of disordered and Al-rich hydrotalcite-like compounds. Clays and Clay Minerals, 34, 507510.Google Scholar
Richardson, I.G. (2013) Classification of possible ordered distributions of trivalent cations in layered double hydroxides and an explanation for the observed variation in the lower solid-solution limit. Acta Crystallographica, B69, 629633.Google Scholar
Sacerdoti, M. and Passaglia, E. (1988) Hydrocalumite from Latium, Italy: its crystal structure and relationship with related synthetic phases. Neues Jahrbuch für Mineralogie, Monatshefte, 1988, 462475.Google Scholar
Sharma, U., Tyagi, B. and Jasra, R.V. (2008) Synthesis and characterization of Mg-Al-CO3 Layered Double Hydroxides for CO2 absorption. Industrial and Engineering Chemistry Research, 47, 95889595.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, A71, 38.Google Scholar
Sideris, P.J., Nielsen, U.G., Gan, Z. and Grey, C.P. (2008) Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science, 321, 113117.Google Scholar
Sissoko, I., Iyagba, E.T., Sahai, R. and Biloen, P. (1985) Anion intercalation and exchange in Al(OH)3-derived compounds. Journal of Solid State Chemistry, 60, 283288.Google Scholar
Speck, A. (2003) Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 713.Google Scholar
Stanimirova, T. (2001) Hydrotalcite polytypes from Snarum, Norway. Annual of the University of Sofia, Faculty of Geology, 94, 7380.Google Scholar
Taylor, H.F.W. (1973) Crystal structures of some double hydroxide minerals. Mineralogical Magazine, 39, 377389.Google Scholar
Walenta, K. (1984) Cualstibite, a new secondary mineral from the Clara Mine in the Central Black Forest (FRG). Chemie der Erde, 43, 255260 [in German].Google Scholar
Wang, X., Bai, Z., Zhao, D., Chai, Y., Guo, M. and Zhang, J. (2013) New synthetic route to Mg-Al-CO3 layered double hydroxides using magnesite. Materials Research Bulletin, 48, 12281232.Google Scholar
Yao, K., Taniguchi, M., Nakata, M., Takahashi, M. and Yamagishi, A. (1998) Nanoscale imaging of molecular adsorption of metal complex on the surface of a hydrotalcite crystal. Langmuir, 14, 24102414.Google Scholar
Zhitova, E.S., Yakovenchuk, V.N., Krivovichev, S.V., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Y. (2010) Crystal chemistry of natural layered double hydroxides. 3. The crystal structure of Mg, Al-disordered quintinite-2H. Mineralogical Magazine, 74, 841848.Google Scholar
Zhitova, E.S., Krivovichev, S.V., Pekov, I.V., Yakovenchuk, V.N. and Pakhomovsky, Ya.A. (2016) Correlation between the d-value and the M 2+:M 3+ cation ratio in Mg–Al–CO3 layered double hydroxides. Applied Clay Science, 130, 211.Google Scholar
Zhitova, E.S., Krivovichev, S.V., Yakovenchuk, V.N., Ivanyuk, G.Yu., Pakhomovsky, Ya.A. and Mikhailova, J.A. (2018 a) Crystal chemistry of natural layered double hydroxides. 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 82, 329346.Google Scholar
Zhitova, E.S., Popov, M.P., Krivovichev, S.V., Zaitsev, A.N. and Vlasenko, N.S. (2018 b) Quintinite-1M from the Mariinskoe deposit, Ural Emerald Mines, Central Urals, Russia. Geology of Ore Deposits, 59, 745751.Google Scholar
Zhitova, E.S., Pekov, I.V., Chukanov, N.V., Yapaskurt, V.O. and Bocharov, V.N. (2019) Minerals of the stichtite–pyroaurite–iowaite–woodallite system from serpentinites of Terektinsky range, Altay Mountains, Russia. Russian Geology and Geophysics, in press.Google Scholar
Supplementary material: File

Zhitova et al. supplementary material

Zhitova et al. supplementary material 1

Download Zhitova et al. supplementary material(File)
File 33.5 KB