Skip to main content Accessibility help
×
Home

Arsenic-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, Sr2Al(AsO4)2(OH), description and crystal structure

Published online by Cambridge University Press:  05 July 2018

F. Cámara
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Torino, via Valperga Caluso 35, I-10125 Turin, Italy CrisDi, Interdepartmental Center for Crystallography, via Pietro Giuria 7, I-10125, Turin, Italy
M. E. Ciriotti
Affiliation:
Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Cirié, Turin, Italy
E. Bittarello
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Torino, via Valperga Caluso 35, I-10125 Turin, Italy CrisDi, Interdepartmental Center for Crystallography, via Pietro Giuria 7, I-10125, Turin, Italy
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Universitá degli Studi di Padova, via G. Gradenigo 6, I-35131 Padua, Italy
F. Massimi
Affiliation:
Dipartimento di Ingegneria Meccanica e Industriale, Universitá degli Studi Roma Tre, via della Vasca Navale 79, I-00146 Rome, Italy
F. Radica
Affiliation:
Dipartimento di Scienze Geologiche, Universitá degli Studi Roma Tre, largo San Leonardo Murialdo 1, I-00146 Rome, Italy
E. Costa
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Torino, via Valperga Caluso 35, I-10125 Turin, Italy
P. Benna
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Torino, via Valperga Caluso 35, I-10125 Turin, Italy CrisDi, Interdepartmental Center for Crystallography, via Pietro Giuria 7, I-10125, Turin, Italy
G. C. Piccoli
Affiliation:
Amici del Museo “F. Eusebio”, via Paruzza 1, I-12051 Alba, Italy
Corresponding

Abstract

The new mineral species grandaite, ideally Sr2Al(AsO4)2(OH), has been discovered on the dump of Valletta mine, Maira Valley, Cuneo province, Piedmont, Italy. Its origin is related to the reaction between the ore minerals and hydrothermal solutions. It occurs in thin masses of bright orange to salmon to brown coloured crystals, or infrequently as fan-like aggregates of small (<1 mm) crystals, with reddish-brown streak and waxy to vitreous lustre. Grandaite is associated with aegirine, baryte, braunite, hematite, tilasite, quartz, unidentified Mn oxides and Mn silicates under study.

Grandaite is biaxial (+) with refractive indices α = 1.726(1), β = 1.731(1), γ = 1.752(1). Its calculated density is 4.378 g/cm3. Grandaite is monoclinic, space group P21/m, with a = 7.5764(5), b = 5.9507(4), c = 8.8050(6) Å, β = 112.551(2)°, V = 366.62(4) Å3 and Z = 2. The eight strongest diffraction lines of the observed X-ray powder diffraction pattern are [d in Å, (I), (hkl)]: 3.194 (100)(11), 2.981 (50.9)(020), 2.922 (40.2)(03), 2.743 (31.4)(120), 2.705 (65.2)(112), 2.087 (51.8) (23), 1.685 (24.5)(321), 1.663 (27.7)(132). Chemical analyses by electron microprobe gave (wt.%) SrO 29.81, CaO 7.28, BaO 1.56, Al2O3 7.07, Fe2O3 2.34, Mn2O3 1.88, MgO 1.04, PbO 0.43, As2O5 44.95, V2O5 0.50, P2O5 0.09, sum 96.95; H2O 1.83 wt.% was calculated by stoichiometry from the results of the crystal-structure analysis. Raman and infrared spectroscopies confirmed the presence of (AsO4)3− and OH groups. The empirical formula calculated on the basis of 9 O a.p.f.u., in agreement with the structural results, is (Sr1.41Ca0.64Ba0.05Pb0.01)∑=2.11(Al0.68Fe0.14 3+Mn0.12 3+Mg0.13)∑=1.07 [(As0.96V0.01)∑=0.97O4]2(OH), the simplified formula is (Sr,Ca)2(Al,Fe3+)(AsO4)2(OH) and the ideal formula is Sr2Al(AsO4)2(OH).

The crystal structure was solved by direct methods and found to be topologically identical to that of arsenbrackebuschite. The structure model was refined on the basis of 1442 observed reflections to R 1 = 2.78%. In the structure of grandaite, chains of edge-sharing M 3+ octahedra run along [010] and share vertices with T5+ tetrahedra, building up [M 3+(T 5+O4)2(OH, H2O)] units, which are connected through interstitial divalent cations. Grandaite is named after the informal appellation of the province where the type locality is located. The new mineral was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2013-059). The discovery of grandaite and of other members of the group (description still in progress) opens up the possibility of exploring the crystal chemistry of the brackebuschite supergroup.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below.

References

Abraham, K., Kautz, K., Tillmanns, E. and Walenta, K. (1978) Arsenbrackebuschite, Pb2(Fe,Zn)(OH,H2O) [AsO4]2, a new arsenate mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 1978, 193196.Google Scholar
Antofilli, M., Borgo, E. and Palenzona, A. (1983) I nostri minerali. Geologia e mineralogia in Liguria. SAGEP Editrice, Genoa, Italy, 296 pp. [in Italian].Google Scholar
Basso, R., Palenzona, A. and Zefiro, L. (1987) Gamagarite: new occurrence and crystal structure refinement. Neues Jahrbuch für Mineralogie, Monatshefte, 1987, 295304.Google Scholar
Biagioni, C., Bonaccorsi, E., Cámara, F., Cadoni, M., Ciriotti, M.E., Bersani, D. and Kolitsch, U. (2013) Lusernaite-(Y), Y4Al(CO3)2(OH,F)11·6H2O, a new mineral species from Luserna Valley, Piedmont, Italy: Description and crystal structure. American Mineralogist, 98, 13221329.CrossRefGoogle Scholar
Berzelius, J. (1818) Undersökning af ett hittills obemärkt Fossil, som stundom följer den Siberiska kromsyrade blyoxiden. Afhandlingar i Fysik, Kemi och Mineralogi, 6, 246254.[in Swedish].Google Scholar
Bideaux, R.A., Nichols, M.C. and Williams, S.A. (1966) The arsenate analog of tsumebite, a new mineral. American Mineralogist, 51, 258259.Google Scholar
Borgo, E. and Palenzona, A. (1988) I nostri minerali. Geologia e mineralogia in Liguria. Aggiornamento 1988. SAGEP Editrice, Genoa, Italy, 48 pp. [in Italian].Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 1–30 in: Structure and Bonding in Crystals II (M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Brugger, J. and Gieré, R. (1999) As, Sb, and Ce enrichment in minerals from a metamorphosed Fe- Mn deposit (Val Ferrera, Eastern Swiss Alps). The Canadian Mineralogist, 37, 3752.Google Scholar
Bruker AXS (2003) SAINT. Data Reduction Software, version 6.45A. Wisconsin, USA.Google Scholar
Brunet, F. and Chopin, C. (1995) Bearthite, Ca2Al(PO4)2OH: stability, thermodynamic properties and phase relations. Contributions to Mineralogy and Petrology, 121, 258266.CrossRefGoogle Scholar
Busz, K. (1912) Tsumebit, ein neues Mineral von Otavi und Zinnsteinkristalle. Deutschen Naturforscher und Artze in Münster, 84, 230230.[in German].Google Scholar
Chopin, C., Brunet, F., Gebert, W., Medenbach, O. and Tillmanns, E. (1993) Bearthite, Ca2Al[PO4]2(OH), a new mineral from high-pressure terranes of the western Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 19.Google Scholar
Christy, A.G., Grew, E.S., Mayo, S.C., Yates, M.G. and Belakovskiy, D.I. (1998) Hyalotekite, (Ba,Pb,K)4 (Ca,Y)2Si8(B,Be)2(Si,B)2O28F, a tectosilicate related to scapolite: new structure refinement, phase transitions and a short-range ordered 3b superstructure. Mineralogical Magazine, 62, 7792.CrossRefGoogle Scholar
Clark, A.M., Criddle, A.J., Roberts, A.C., Bonardi, M. and Moffatt, E.A. (1997) Feinglosite, a new mineral related to brackebuschite, from Tsumeb, Namibia. Mineralogical Magazine, 61, 285289.CrossRefGoogle Scholar
Cocco, G., Fanfani, L. and Zanazzi, P.F. (1967) The crystal structure of fornaref. Zeitschrift für Kristallographie, 124, 385397.CrossRefGoogle Scholar
de Villiers, J.E. (1943) Gamagarite, a new vanadium mineral from the Postmasburg manganese deposits. American Mineralogist, 28, 329335.Google Scholar
Donaldson, D.M. and Barnes, W.H. (1955) The structures of the minerals of the descloizite group and adelite groups: III – brackebuschite. American Mineralogist, 40, 597613.Google Scholar
Emsley, J. (2011) Arsenic. Pp. 47–55 in: Nature’s Building Blocks: An A–Z Guide to the Elements. Oxford University Press, Oxford, UK.Google Scholar
Fanfani, L. and Zanazzi, P.F. (1967) Structural similarities of some secondary lead minerals. Mineralogical Magazine, 36, 522529.CrossRefGoogle Scholar
Fanfani, L. and Zanazzi, P.F. (1968) The crystal structure of vauquelinite and the relationships to fornaref. Zeitschrift für Kristallographie, 126, 433443.CrossRefGoogle Scholar
Foley, J.A., Hughes, J.M. and Lange, D. (1997) The atomic arrangement of brackebuschite, redefined as Pb2(Mn3+,Fe3+)(VO4)2(OH), and comments on Mn3+ octahedra. The Canadian Mineralogist, 35, 10271033.Google Scholar
Franchi, S. and Stella, A. (1930) Carta Geologica d’Italia 1:100. 000: Foglio 78–79 (Argentera- Dronero). 1a edizione. Regio Ufficio Geologico. Stabilimento Tipografico L. Salomone, Rome [in Italian].Google Scholar
Frost, R.L. and Keeffe, E.C. (2011) The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2]·7H2O – A Raman spectroscopic study. Spectrochimica Acta Part A, 81, 111116.CrossRefGoogle ScholarPubMed
Geijer, P. (1921) The cerium minerals of Bastnäs at Riddarhyttan. Sveriges Geologiska Undersökning Årsbok, C304, 324.Google Scholar
Gidon, M., Kerchove, C., Michard, A., Tricart, P. and Goffé, B. (1994) Carte Géologique de la France à 1:50.000. Feuille Aiguille de Chambeyron (872). Notice Explicative. BRGM, Service Géologique National, Orléans, France [in French].Google Scholar
González del Tánago, J., La Iglesia, Á., Rius, J. and Fernández Santín, S. (2003) Calderó nite, a new leadiron- vanadate of the brackebuschite group. American Mineralogist, 88, 17031708.CrossRefGoogle Scholar
Hak, J., Johan, Z., Kvaček, M. and Liebscher, W. (1969) Kemmlitzite, a new mineral of the woodhouseite group. Neues Jahrbuch für Mineralogie, Monatshefte, 1969, 201212.Google Scholar
Harlow, G.E., Dunn, P.J. and Rossman, G.R. (1984) Gamagarite: a re-examination and comparison with brackebuschite-like minerals. American Mineralogist, 69, 803806.Google Scholar
Hofmeister, W. and Tillmanns, E. (1978) Strukturelle untersuchungen an arsenbrackebuschit. Tschermaks Mineralogische und Petrographische Mitteilungen, 25, 153163.[in German].CrossRefGoogle Scholar
Horiba Jobin, Yvon (2004, 2005) LabSpec software for Raman spectroscopic data analysis, acquisition and manipulation. Version 5.64.15. HORIBA Jobin Yvon SAS, Villeneuve d’Ascq, France.Google Scholar
Jonsson, O. (1970) The crystal structure of Na2Cr3O8OH and K2Cr3O8OH. Acta Chemica Scandinavica, 24, 36273644.CrossRefGoogle Scholar
Kiat, J.M., Garnier, P., Calvarin, G. and Pinot, M. (1993) Structural study of lead orthophosphovanadates: role of the electron lone pairs in the phase transitions. Journal of Solid State Chemistry, 103, 490503.CrossRefGoogle Scholar
Lacroix, A. (1915) Note préliminaire sur une nouvelle espèce minérale (furnaref), provenant du Moyen Congo (Afrique équatoriale française). Bulletin de la Société française de Minéralogie, 38, 198200.[in French].Google Scholar
Lacroix, A. (1916) Erratum concernant une nouvelle espèce minérale du Congo. Bulletin de la Société française de Minéralogie, 39, 8484.[in French].Google Scholar
LaForge, L. (1938) Crystallography of tsumebite. American Mineralogist, 23, 772782.Google Scholar
Larson, A.C. and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, 86–748. Los Alamos National Laboratory, New Mexico.Google Scholar
Lefèvre, R. (1982) Les nappes briançonnaises internes et ultra-briançonnaises dans les Alpes Cottiennes méridionales. Thèse Scientifique, Université Paris Sud - Paris XI, Orsay, France [in French].Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H_O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.Google Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. The Canadian Mineralogist, 17, 7176.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale retationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mangione, T.G. (1999) Allume, vetriolo, ferro: attività minerarie e metallurgiche nel marchesato di Saluzzo (secoli XIV–XVI). Pp. 79–101 in: Miniere, fucine, metallurgia nel Piemonte medievale e moderno (R. Comba, editor). Società per gli Studi Storici Archeologici e Artistici della Provincia di Cuneo, Centro studi storico-etnografici, Museo provinciale "Augusto Doro", Rocca de’ Baldi, Cuneo, Italy [in Italian].Google Scholar
Matsubara, S., Miyawaki, R., Yokoyama, K., Shimizu, M. and Imai, H. (2004) Tokyoite, Ba2Mn3+(VO4)2(OH), a new mineral from the Shiromaru mine, Okutama, Tokyo, Japan. Journal of Mineralogical and Petrological Sciences, 99, 363367.CrossRefGoogle Scholar
Medenbach, O., Abraham, K. and Gebert, W. (1983) Molybdofornacit, ein neues Blei–Kupfer–Arsenat– Molybdat–Hydroxid von Tsumeb, Namibia. Neues Jahrbuch für Mineralogie, Monatshefte, 1983, 289295.[in German].Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Moore, P.B., Irving, A.J. and Kampf, A.R. (1975) Foggite, CaAl(OH)2(H2O)[PO4]; goedkenite, (Sr,Ca)2Al(OH)[PO4 ] 2 ; and samuelsonite (Ca,Ba)Fe2+ 2 Mn2+ 2 Ca8Al2(OH)2[PO4]10: three new species from the Palermo No. 1 Pegmatite, North Groton, New Hampshire. American Mineralogist, 60, 957964.Google Scholar
Moore, P.B., Araki, T. and Ghose, S. (1982) Hyalotekite, a complex lead borosilicate: Its crystal structure and the lone-pair effect of Pb(II). American Mineralogist, 67, 10121020.Google Scholar
Moore, P.B., Sen Gupta, P.K. and Schlemper, E.O. (1985) Solid solution in plumbous potassium oxysilicate affected by interaction of a lone pair with bond pairs. Nature, 318, 548550.CrossRefGoogle Scholar
Mukherjee, A., Sengupta, M.K. and Hossain, M.A. (2006) Arsenic contamination in groundwater: A global perspective with emphasis on the Asian scenario. Journal of Health Population and Nutrition, 24, 142163.Google ScholarPubMed
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan, T.J. (1998a) Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions and solids. Geochimica et Cosmochimica Acta, 62, 32853300.CrossRefGoogle Scholar
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan, T.J. (1998b) Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochimica et Cosmochimica Acta, 62, 34993514.CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York.Google Scholar
Nichols, M.C. (1966) The structure of tsumebite. American Mineralogist, 51, 267267.Google Scholar
Nickel, E.H. and Hitchen, G. (1994) The phosphate analog of molybdofornaref from Whim Creek, Western Australia. Mineralogical Record, 25, 203204.Google Scholar
Norman, N.C. (editor) (1998) Chemistry of arsenic, antimony and bismuth. Blackie Academic and Professional, London, 483 pp.Google Scholar
Palenzona, A. (1991) I nostri minerali. Geologia e mineralogia in Liguria. Aggiornamento 1990. Amici Mineralogisti Fiorentini, Associazione Piemontese Mineralogia Paleontologia & Mostra Torinese Minerali, Centro Mineralogico Varesino, Gruppo Mineralogico “A. Negro” Coop Liguria (GE), Gruppo Mineralogico Lombardo, Gruppo Mineralogico Paleontologico “3M”, SAGEP, Genoa, Italy [in Italian].Google Scholar
Palenzona, A. (1996) I nostri minerali. Geologia e mineralogia in Liguria, Aggiornamento 1995. Rivista Mineralogica Italiana, 2, 149172.[in Italian].Google Scholar
Pekov, I.V. (2007) New minerals from former Soviet Union countries, 1998–2006: new minerals approved by the IMA Commission on New Minerals and Mineral Names. Mineralogical Almanac, 11, 951.Google Scholar
Pekov, I.V., Kleimenov, D.A., Chukanov, N.V., Yakubovich, O.V., Massa, W., Belakovskiy, D.I. and Pautov, L.A. (2002) Bushmakinite Pb2Al(PO4)(VO4)(OH), a new mineral of the brackebuschite group from oxidized zone of Berezovskoye gold deposit, the Middle Urals. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 131, 6271.Google Scholar
Piccoli, G.C. (editor) (2002) Minerali delle Alpi Marittime e Cozie Provincia di Cuneo. Pp. 147–148 in: Amici del Museo “F. Eusebio”. Alba, Cuneo, Italy [in Italian].Google Scholar
Pipino, G. (2010) Documenti minerari degli stati sabaudi. Museo Storico dell’Oro Italiano, Tipografia Pesce, Ovada (Alessandria), Italy, 323 pp. [in Italian].Google Scholar
Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative analysis: Part I. Application to the analysis of homogeneous samples. La Recherche Aerospatiale, 3, 1338.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ j(rZ) procedure for improved quantitative microanalysis. Pp. 104–106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Rammelsberg, C. (1880) Über die vanadinerze aus dem Staat Có rdoba in Argentinien. Zeitschrift der Deutschen Geologischen Gesellschaft, 32, 708713.[in German].Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rosický, V. (1912) Preslit, ein neues Mineral von Tsumeb in Deutsch-Südwestafrika. Zeitschrift für Krystallographie und Mineralogie, 51, 521526.[in German].Google Scholar
Roth, P. (2007) Bearthite. Pp. 44–45 in: Minerals first discovered in Switzerland and minerals named after Swiss individuals. Kristallografik Verlag, Achberg, Germany.Google Scholar
Schlüter, J., Gebhard, G. and Wappler, G. (1994) Tsumebit oder Arsentsumebit aus Tsumeb? Lapis, 19(10), 3134 [in German].Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Shen, J. and Moore, P.B. (1982) Törnebohmite, RE2Al(OH)[SiO4]2: crystal structure and genealogy of RE(III)Si(IV) $ Ca(II)P(V) isomorphisms. American Mineralogist, 67, 10211028.Google Scholar
Spek, A.L. (2009) Structure validation in chemical crystallography. Acta Crystallographica, D65, 148155.Google Scholar
Spencer, L.J. (1913) A (sixth) list of new mineral names. Mineralogical Magazine, 16, 352378.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical Structural Mineral Classification System, 9th Edition. Schweizerbart, Stuttgart, Germany, 870 pp.Google Scholar
Twarakavi, N.K.C. and Kaluarachchi, J.J. (2006) Arsenic in the shallow ground waters of conterminous United States: assessment, health risks, and costs for MCL compliance. Journal of American Water Resources Association, 42, 275294.CrossRefGoogle Scholar
Vaughan, D.J. (2006) Arsenic. Elements, 2, 7175.CrossRefGoogle Scholar
Vésignié, J.P.L. (1935) Présentation d’échantillons. Bulletin de la Société française de Minéralogie, 58, 45.[in French].Google Scholar
Walenta, K. and Dunn, P.J. (1984) Arsenogoyazit, ein neues mineral der crandallitgruppe aus dem Schwarzwald. Schweizerische Mineralogische und Petrographische Mitteilungen, 64, 1119.[in German].Google Scholar
Wherry, E.T. (1921) New minerals. American Mineralogist, 6, 118119.Google Scholar
Williams, S.A. (1973) Heyite, Pb5Fe2(VO4)2O4, a new mineral from Nevada. Mineralogical Magazine, 39, 6568.CrossRefGoogle Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, physical and chemical tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43, 11261128.CrossRefGoogle Scholar
Yakubovich, O.V., Massa, W. and Pekov, I.V. (2002) Crystal structure of the new mineral bushmakinite, Pb2{(Al,Cu)[PO4][(V,Cr,P)O4](OH)}. Doklady Earth Sciences, 382, 100105.Google Scholar
Zubkova, N.V., Pushcharovsky, D.Y., Giester, G., Tillmanns, E., Pekov, I.V. and Kleimenov, D.A. (2002) The crystal structure of arsentsumebite, Pb2Cu[(As,S)O4]2(OH). Mineralogy and Petrology, 75, 7988.CrossRefGoogle Scholar

Cámara et al. supplementary material

CIF

File 26 KB

Cámara et al. supplementary material

Structure file

File 89 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between 05th July 2018 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-kdwz2 Total loading time: 0.29 Render date: 2021-01-24T23:01:06.563Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Arsenic-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, Sr2Al(AsO4)2(OH), description and crystal structure
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Arsenic-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, Sr2Al(AsO4)2(OH), description and crystal structure
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Arsenic-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, Sr2Al(AsO4)2(OH), description and crystal structure
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *