Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T12:34:26.113Z Has data issue: false hasContentIssue false

An X-ray study of manganese minerals

Published online by Cambridge University Press:  14 March 2018

Bibhuti Mukherjee*
Affiliation:
Geological Survey of India, Calcutta, India

Summary

Rhodonite, rhodochrosite, spandite, psilomelane, beldongrite, braunite, sitaparite, and vredenburgite from a collection hy Fermor have been studied by the X-ray powder diffraction method. The cell dimensions of all forms of eryptomelane—massive, horny, botryoidal, reniform, mamillated, and stalactitic—are a = 9.82 Å., c= 2.86 Å.. whereas the cell dimensions of shiny pitch-like beldongrite are a= 9.82 Å., c= 2·87 Å. The amorphous admixture associated with cryptomelane is revealed by a broad halo, 4·60 Å. to 3·90 Å., in the powder pattern. Aminoff's crystal data for braunite are discussed with a different orientation, and a new space group, I 4/mmm, is assigned after indexing the powder pattern. Fermor' sitaparite (bixbyite) is assigned a new space group Im3 , different from that proposed by Pauling et al., on the basis of a fresh indexing of the powder pattern. Manganese-garnet from the gondite series has a cell-size of the order of spessartine, whereas the cell-size of manganese-garnet from the kodurite series varies from 11·72 to 11·95 Å. Fermor's spandite from the kodurite series is a mixture of spessartine, grossular, and andradite garnet-molecules with almandine and pyrope as minor components. Ramsdellite and γ-MnO2 or β-MnO2 are found in a number of samples of manganese ores.

Type
Research Article
Copyright
Copyright © 1959, The Mineralogical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aminoff, (G.), 1931. Kungl. Svenska Vetenskapsakad Handl., ser. 3, vol. 9, 10. 14 [M.A. 4-461].Google Scholar
Aminoff, (G.), 1926. Zeits. Krist., vol. 64, p. 475.[M.A. 3342I.Google Scholar
Byström, (A.M.), 1949. Aeta Chem. Seand., vol. 3, 10- 163 [M.A. 11-238].Google Scholar
Byström, (A.) and Byström, (A.M.), 1950. Aeta Cryst., vol. 3, p. 153.[M.A. 11-238].Google Scholar
Cole, (W.F.), Wadsley, (A.D.), and Walkley, (A.), 1947. Trans. Eleetroehem. Soe., vol. 92, p. 133.Google Scholar
Fermor, (L.L.), 1909. Mere. Geol. Surv. India, vol. 37, 10ts. i-iv.Google Scholar
Fermor, (L.L.), 1938. Proe. Nat. Inst. Sei. India, vol. 4, p. 253.[M.A. 7-169].Google Scholar
Fleischer, (M.) and Richmond), (W. E.), 1943. Econ. Geol., vol. 38, 10. 269 [M.A. 9-4..Google Scholar
Harcourt, (G.A.), 1942. Amer. Min., vol. 27, p. 74.[M.A. 8-280].Google Scholar
Hesse, (R.), 1948. Aeta Cryst., vol. 1, 1o. 200 [M.A. 10-527].Google Scholar
Johansson, (K.), 1928. Zeits. Krist., vol. 68, p. 114.Google Scholar
Mason, (B.), 1942. Geol. FSr. FSrh., vol. 64, 10. 117 [M.A. 8-365].Google Scholar
Mason, (B.), 1947. Amer. Min., vol. 32, 10. 426 [M.A. 10-210]. .Google Scholar
McMurdie, (H.F.) and Golovato, (E.), 1948. Bur. Stand. Journ. Res., vol. 41, p. 589.Google Scholar
[Mikheev, (V.I.) and Dubinna, (V.N.)] . [Mem. All-Union Min. Soc.], vol. 77, p. 125.Google Scholar
Mukherjee, (B.), 1959. Min. Mag., vol. 32, p. 166.Google Scholar
Orcel, (J.) and Pavlovitch, (S.), 1931. Bull. Soc. franç. Min., vol. 54, pp. 108.and 166 [M.A. 5-206.].Google Scholar
Passerini, (L.), 1930. Gazz. Chim. Ital., vol. 60, p. 397.Google Scholar
Pauling, (L.) and Shappell, (M.D.), 1930. Zeits. Krist., vol. 75, p. 128.[M.A. 4-364].Google Scholar
Zachariasen, (W.), 1928. Zeits. Krist., vol. 67, p. 455.[M.A. 3-527].Google Scholar