Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-08-04T06:21:09.995Z Has data issue: false hasContentIssue false

Vaterite from Ballycraigy, Larne, Northern Ireland

Published online by Cambridge University Press:  14 March 2018

J. D. C. McConnell*
Affiliation:
Dept. of Mineralogy and Petrology, Downing Place, Cambridge

Summary

Vaterite, the third unstable polymorph of CaCO3, is recognized by optical and X-ray powder techniques as a major constituent in a carbonated calcium silicate hydrogel complex formed from larnite at Ballycraigy, Lame, Northern Ireland. Re-indexed X-ray powder data obtained on synthetic vaterite are provided indicating a hexagonal unit cell with dimensions a = 7·135 Å. and c = 8·524 Å., Z = 6CaCO3. The re-indexing is endorsed by the results of electron diffraction study of synthetic vaterite. Vaterite is shown to correspond to the hypothetical CaCO3 member of the bastnäsite-synchisite mineral series on the basis of extrapolated cell dimensions and optical properties. A structural scheme for vaterite is proposed in which Ca layers replace the CeF layers in bastnäsite, and near-vertical CO3 groups are present. The stability relations of natural vaterite are discussed and comment made on the recent observation of vaterite, in a like environment, in carbonated cements and mortars.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bunn, (C.W.), 1945. Chemical Crystallography, Oxford.Google Scholar
Bütschli, (O.) 1908. [Abh. Göttinger Akad., ser. 2, vol. 4, p. 3]; quoted by Gibson, Wyckoff, and Merwin, 1925.Google Scholar
Cole, (W.F.) and Kroone, (B.), 1959. Nature, Brit. Assoc. no. of vol. 184, p. B.A.57.Google Scholar
Donnay, (G.) and Donnay, (J. D. H.), 1953. Amer. Min., vol. 38, p. 932.Google Scholar
Gibson, (R. E.), Wyckoff, (R. W. G.), and Merwin, (H.E.), 1925. Amer. Journ. Sci., set. 5, vol. 10, p. 325.CrossRefGoogle Scholar
Graf, (D.L.) and Lamar, (J.E.), 1955. Econ. Geol., anniv, vol., p. 639.Google Scholar
Heide, (F.), 1924. Centr. Min., p. 641.Google Scholar
Hey, (M.H.), 1955. Chemical Index of Minerals, 2nd edn. Brit. Mus. (Nat. Hist.).Google Scholar
Johnston, (J.), Merwin, (H.E.), and Williamson, (E.D.), 1916. Amer. Journ. Sci., ser. 4, vol. 41, p. 473.CrossRefGoogle Scholar
Long, (J. V. P.) and McConnell, (J. D. C.), 1959. Min. Mag., vol. 32, p. 117.Google Scholar
Lucas, (G.), 1947. Bull. Soc. Franç. Min., vol. 70, p. 185.Google Scholar
Mayer, (F.K.) and Weineck, (E.), 1932. Jena Zeits. Naturwiss., vol. 66, p. 199.Google Scholar
Meigen, (W.), 1911. In Spencer, (L.J.), Min. Mag., vol. 16, p. 374.Google Scholar
McCONNELL, (J. D. C.), 1954. Min. Mag., vol. 30, p. 293.Google Scholar
McCONNELL, (J. D. C.), 1955. Min. Mag., vol. 30, p. 672.Google Scholar
Olshausen, (S. Yon), 1924. Zeits. Krist., vol. 61, p. 463.Google Scholar
Prien, (E.L.) and Frondel, (C.), 1947. Journ. Urology, Baltimore, vol. 57, p. 949 [M.A. 10-215].CrossRefGoogle Scholar
Rinne, (F.), 1924. Zeits. Krist., vol. 60, p. 55.Google Scholar
Vater, (H.), 1893-1901. A series of papers in Zeits. Kryst. Min.Google Scholar
Wyckoff, (R. W. G.), 1931. The Structure of Crystals, New York.Google Scholar