Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T08:21:44.269Z Has data issue: false hasContentIssue false

The Zona Pellucida Porosity: Three-Dimensional Reconstruction of Four Types of Mouse Oocyte Zona Pellucida Using a Dual Beam Microscope

Published online by Cambridge University Press:  14 December 2012

Sergi Novo
Affiliation:
Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Leonardo Barrios
Affiliation:
Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Elena Ibáñez
Affiliation:
Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Carme Nogués*
Affiliation:
Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
*
*Corresponding author. E-mail: carme.nogues@uab.cat
Get access

Abstract

In the last decade, the applicability of focus ion beam–field emission scanning electron microscopy (FIB-FESEM) in the biological field has begun to get relevance. Among the possibilities offered by FIB-FESEM, high-resolution three-dimensional (3D) reconstruction of biological structures is one of the most interesting. Using this tool, the 3D porosity of four different types of mouse oocyte zona pellucida (ZP) was analyzed. A surface analysis of the mouse oocyte ZP was first performed by SEM. Next, one oocyte per ZP type was selected, and an area of its ZP was completely milled, using the cut and view mode, in the FIB-FESEM. Through a 3D reconstruction of the milled area, a map of the distribution of the pores across the ZP was established and the number and volume of pores were quantified, thus enabling for the first time the study of the inner porosity of the mouse ZP. Differences in ZP porosity observed among the four types analyzed allowed us to outline a model to explain the changes that the ZP undergoes through immature, mature, predegenerative, and degenerative stages.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biggers, J.D., McGinnis, L.K. & Raffin, M. (2000). Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod 63, 281293.Google Scholar
Bolte, S. & Cordelières, P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224, 213232.Google Scholar
Bushby, A.J., P'ng, K.M.Y., Young, R.D., Pinali, C., Knupp, C. & Quantock, A.J. (2011). Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat Protoc 6, 845858.Google Scholar
Calafell, J.M., Nogués, C., Ponsà, M., Santaló, J. & Egozcue, J. (1992). Zona pellucida surface of immature and in vitro mouse oocytes: Analysis by scanning electron microscopy. J Assist Reprod Genet 9, 365372.Google Scholar
Coudet, G., Mugnier, S., Callebaut, I. & Monget, P. (2008). Phylogenetic analysis and identification of pseudogenes reveal a progressive loss of zona pellucida genes during evolution of vertebrates. Biol Reprod 78, 796806.Google Scholar
Engqvist, H., Svahn, F., Jarmar, T., Detsch, R., Mayr, H., Thomsen, P. & Ziegler, G. (2008). A novel method for producing electron transparent films of interfaces between cells and biomaterials. J Mater Sci Mater Med 19, 467470.CrossRefGoogle ScholarPubMed
Familiari, G., Heyn, R., Relucenti, M. & Sathananthan, H. (2008). Structural changes of the zona pellucida during fertilization and embryo development. Front Biosci 13, 67306751.Google Scholar
Familiari, G., Nottola, S.A., Familiari, A. & Motta, P.M. (1989). The three-dimensional structure of the zona pellucida in growing and atetric ovarian follicles of the mouse. Cell Tissue Res 257, 247253.CrossRefGoogle Scholar
Familiari, G., Nottola, S.A., Macchiarelli, G., Micara, G., Aragona, C. & Motta, P.M. (1992). Human zona pellucida during in vitro fertilization: An ultrastructural study using saponin, ruthenium red, and osmium-thiocarbohydazide. Mol Reprod Dev 32, 5161.Google Scholar
Familiari, G., Relucenti, M., Heyn, R., Micara, G. & Correr, S. (2006). Three-dimensional structure of the zona pellucida at ovulation. Micros Res Techniq 69, 415426.CrossRefGoogle ScholarPubMed
Green, D.P.L. (1997). Three-dimensional structure of the zona pellucida. Rev Reprod 2, 147156.Google Scholar
Heymann, J.A., Hayles, M., Gestmann, I., Giannuzzi, L.A., Lich, B. & Subramaniam, S. (2006). Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155, 6373.Google Scholar
Heymann, J.A., Shi, D., Kim, S., Bliss, D., Milne, J. & Subramaniam, S. (2009). 3D Imaging of mammalian cells with ion-abrasion scanning electron microscopy. J Struct Biol 166, 17.Google Scholar
Jennings, P.C., Merriman, J.A., Beckett, E.L., Hansbro, P.M. & Jones, K.T. (2011). Increased zona pellucida thickness and meiotic spindle disruption in oocytes from cigarette smoking mice. Hum Reprod 26, 878884.Google Scholar
Kamino, T., Yaguchi, T., Ohnishi, T., Ishitani, T. & Osumi, M. (2004). Application of FIB-STEM system for 3D observation of a resin-embedded yeast cell. J Electron Microsc 53, 563566.Google Scholar
Keefe, D., Tran, P., Pellegrini, C. & Oldenbourg, R. (1997). Polarized light microscopy and digital image processing identify a multilaminar structure of the hamster zona pellucida. Hum Reprod 12, 12501252.Google Scholar
Knott, G., Marchman, H., Wall, D. & Lich, B. (2008). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28, 29592964.Google Scholar
Langford, R.M. & Petford-Long, A.K. (2011). Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J Vac Sci Technol 19, 21862193.CrossRefGoogle Scholar
Lunn, M.O. & Wright, S.J. (2009). Imaging the zona pellucida of canine and feline oocytes using scanning electron microscopy. Microsc Microanal 15, 214.Google Scholar
Martínez, E., Engel, E., López-Iglesias, C., Mills, C.A., Planell, J.A. & Samitier, J. (2008). Focused ion beam/scanning electron microscopy characterization of cell behavior on polymer micro-/nanopatterned substrates: A study of cell-substrate interactions. Micron 39, 111116.Google Scholar
Michelmann, H.W., Rath, D., Töpfer-Petersen, E. & Schwartz, P. (2007). Structural and functional events on the porcine zona pellucida during maturation, fertilization and embryonic development: A scanning electron microcopy analysis. Reprod Dom Anim 42, 594602.Google Scholar
Moreira da Silva, F. & Metelo, R. (2005). Relation between physical properties of the zona pellucida and viability of bovine embryos after slow-freezing and vitrification. Reprod Dom Anim 40, 205209.Google Scholar
Murphy, G.E., Narayan, K., Lowekamp, B.C., Hartnell, L.M., Heymann, J.A., Fu, J. & Subramaniam, S. (2011). Correlative 3D imaging of whole mammalian cells eighth light and electron microscopy. J Struct Biol 176, 268278.Google Scholar
Nogués, C., Ponsà, M., Vidal, F., Boada, M. & Egozcue, J. (1988). Effects of aging on the zona pellucida surface of mouse oocytes. J In Vitro Fert Embryo Transf 5, 225229.Google Scholar
Papi, M., Brunelli, R., Sylla, L., Parasassi, T., Monaci, M., Maulucci, G., Missori, M., Arcovito, G., Ursini, F. & De Spirito, M. (2009). Mechanical properties of zona pellucida hardening. J Eur Biophys 39, 987992.Google Scholar
Pelletier, C., Keefe, D.L. & Trimarchi, J.R. (2004). Noninvasive polarized light microscopy quantitatively distinguishes the multilaminar structure of the zona pellucida of living human eggs and embryos. Fertil Steril 81, 850856.Google Scholar
Phillips, D.M. & Shalgi, R.M. (1980). Surface properties of the zona pellucida. J Exp Zool 21, 18.Google Scholar
Rasband, W.S. (1997–2009). ImageJ. Bethesda, MD: U.S. National Institutes of Health. Available at http://rsb.info.nih.gov/ij/.Google Scholar
Santos, P., Chaveiro, A., Simoes, N. & Moreira da Silva, F. (2008). Bovine oocyte quality in relation to ultrastructural characteristics of zona pellucida, polyspermic penetration and developmental competence. Reprod Dom Anim 43, 685689.CrossRefGoogle ScholarPubMed
Schroeder-Reiter, E., Pérez-Willard, F., Zeile, U. & Wanner, G. (2009). Focused ion beam (FIB) combined with high scanning electron microcopy: A promising tool for 3D analysis of chromosome architecture. J Struct Biol 165, 97106.CrossRefGoogle Scholar
Scott, K. (2011). 3D elemental and structural analysis of biological specimens using electrons and ions. J Microsc 242, 8693.Google Scholar
Seliger, R.L. & Fleming, W.P. (1974). Focused ion beams in microfabrication. J Appl Phys 45, 14161422.Google Scholar
Tsuiki, A., Hoshiai, H., Takahashi, K., Suzuki, M. & Hoshi, K. (1986). Sperm-egg interactions observed before the completion of human oocyte maturation. J Reprod Fertil 83, 487495.Google Scholar
Vanroose, G., Nauwynck, H., Van Soom, A., Ysebaert, M.T., Charlier, G., Van Oostveldt, P. & Kruif, A. (2000). Structural aspects of the zona pellucida of in vitro-produced bovine embryos: A scanning electron and confocal laser scanning microscopic study. Biol Reprod 62, 463469.CrossRefGoogle ScholarPubMed
Wassarman, P.M. (1988). Zona pellucida glycoproteins. Ann Rev Biochem 57, 415442.Google Scholar
Wirth, R. (2009). Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale. Chem Geol 261, 217229.CrossRefGoogle Scholar
Young, R.J., Dingle, T., Robinson, K. & Pudh, P.J.A. (1993). An application of scanned focused ion beam to studies on the internal morphology of small arthropods. J Microsc 172, 8188.Google Scholar