Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T00:18:00.668Z Has data issue: false hasContentIssue false

Zinc Mapping and Density Imaging of Rabbit Pancreas Endocrine Tissue Sections Using Nuclear Microscopy

Published online by Cambridge University Press:  03 July 2009

M.D. Ynsa*
Affiliation:
Centro de Micro-Análisis de Materiales, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
M.Q. Ren
Affiliation:
Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore117542
R. Rajendran
Affiliation:
Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore117542
J.N. Sidhapuriwala
Affiliation:
Department of Pharmacology, Cardiovascular Biology Research Group, Yong Loo Lin School of Medicine, National University of Singapore, 18 Medical Drive, Singapore117597
J.A. van Kan
Affiliation:
Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore117542
M. Bhatia
Affiliation:
Department of Pharmacology, Cardiovascular Biology Research Group, Yong Loo Lin School of Medicine, National University of Singapore, 18 Medical Drive, Singapore117597
F. Watt
Affiliation:
Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore117542
*
Corresponding author. E-mail: m.ynsa@uam.es
Get access

Abstract

Nuclear microscopy is a suite of techniques based on a focused beam of MeV protons. These techniques have the unique ability to image density and structural variations in relatively thick tissue sections, map trace elements at the cellular level to the microgram per gram (dry weight) level, and extract quantitative information on these elements. The trace elemental studies can be carried out on unstained freeze-dried tissue sections, thereby minimizing any problems of contamination or redistribution of elements during conventional staining and fixing procedures. The pancreas is a gland with different specialized cells and a complex hormonal activity where trace elements play an important role. For example, zinc has an active role in insulin production, and calcium ions participate in the stimulation and secretion process of insulin. Using nuclear microscopy with a spatial resolution of 1 μm, we have located, using zinc mapping, the islets of Langerhans in freeze-dried normal rabbit tissue sections. The islets of Langerhans contain β-cells responsible for insulin production. Subsequent quantitative analyses have indicated elevations in most elements within the islets of Langerhans, and significantly so for the concentrations of Zn [3,300 compared to 90 μg/g (dry weight)] and Ca [1,100 compared to 390 μg/g (dry weight)].

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anitha Nandhini, A.T., Thirunavukkarasu, V. & Anuradha, C.V. (2005). Taurine modifies insulin signalling enzymes in the fructose-fed insulin resistant rats. Diab Metabolism 31, 337344.CrossRefGoogle Scholar
Ashcroft, F.M., Proks, P., Smith, P.A., Ammälä, C., Bokvist, K. & Rorsman, P. (1994). Stimulus-secretion coupling in pancreatic beta cells. J Cell Biochem 55, 5465.CrossRefGoogle ScholarPubMed
Berger, J. & Schneeman, B.O. (1986). Stimulation of bile-pancreatic zinc, protein and carboxypeptidase secretion in response to various proteins in the rat. J Nutr 116, 265272.CrossRefGoogle ScholarPubMed
Blouet, C., Mariotti, F., Azzout-Marniche, D., Mathé, V., Mikogami, T., Tomé, D. & Huneau, J.F. (2007). Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Rad Biol Med 42, 10891097.CrossRefGoogle ScholarPubMed
Chausmer, A.B. (1998). Zinc, insulin and diabetes. J Am Coll Nutr 17, 109115.CrossRefGoogle ScholarPubMed
Devirgiliis, C., Zalewski, P.D., Perozzi, G. & Murgia, C. (2007). Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res 622, 8493.CrossRefGoogle ScholarPubMed
Emdin, S.O., Dodson, G.G., Cutfield, J.M. & Cutfield, S.M. (1980). Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia 19, 174182.CrossRefGoogle ScholarPubMed
Foster, M.C., Leapman, R.D., Li, M.X. & Atwater, I. (1993). Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys J 64, 525532.CrossRefGoogle ScholarPubMed
Huber, A.M. & Gershoff, S.N. (1973). Effect of zinc deficiency in rats on insulin release from the pancreas. J Nutr 103, 17391744.CrossRefGoogle ScholarPubMed
Juntti-Berggren, L., Lindh, U. & Berggren, P.O. (1991). Starvation is associated with changes in the elemental composition of the pancreatic beta-cell. Biosci Rep 11, 7384.CrossRefGoogle ScholarPubMed
Juntti-Berggren, L., Lindh, U., Berggren, P.O. & Frankel, B.J. (1987). Proton microprobe analysis of 15 elements in pancreatic B cells and exocrine pancreas in diabetic Chinese hamsters. Biosci Rep 7, 3341.CrossRefGoogle ScholarPubMed
Lindh, U., Juntti-Berggren, L., Berggren, P.O. & Hellman, B. (1985). Proton microprobe analysis of pancreatic beta-cells. Biomed Biochim Acta 44, 5561.Google ScholarPubMed
Lindh, U., Sunde, T., Juntti-Berggren, L., Berggren, P.O. & Pålsgård, E. (1991). Nuclear microscopy and the application to diabetes research. Nucl Instrum Methods B 56-57, 12791283.CrossRefGoogle Scholar
Lindstrom, P., Norlund, L., Sandstrom, P.E. & Sehlin, J. (1988). Evidence for co-transport of sodium, potassium and chloride in mouse pancreatic islets. J Physiol 400, 223236.CrossRefGoogle ScholarPubMed
Maturo, J. & Kulakowski, E.C. (1988). Taurine binding to the purified insulin receptor. Biochem Pharmacol 37, 37553760.CrossRefGoogle Scholar
Maxwell, J.A., Campbell, J.L. & Teesdale, W.J. (1989). The Guelph PIXE software package. Nucl Instrum Methods B 43, 218230.CrossRefGoogle Scholar
Mayer, M. (1997). SIMNRA User's Guide. Technical Report IPP 9/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany.Google Scholar
Murgia, C., Devirgiliis, C., Mancini, E., Donadel, G., Zalewski, P. & Perozzi, G. (2008). Diabetes-linked zinc transporter ZnT8 is a homodimeric protein expressed by distinct rodent endocrine cell types in the pancreas and other glands. Nutr Metab Cardiovasc Dis 19, 431439.CrossRefGoogle ScholarPubMed
Okabe, M., Yoshida, T., Yoshii, R., Sawataisi, M. & Takaya, K. (2003). Zinc detection in the islet of Langerhans by SIMS. Appl Surf Sci 203-204, 714717.CrossRefGoogle Scholar
Pålsgård, E. & Grime, G.W. (1996). Direct measurement of elemental distributions in insulin-producing cells using nuclear microscopy. Cell Mol Biol 42, 4957.Google ScholarPubMed
Pålsgård, E., Lindh, U., Juntti-Berggren, L., Berggren, P.O., Roomans, G.M. & Grime, G.W. (1994). Proton-induced and electron-induced X-ray microanalysis of insulin-secreting cells. Scanning Microsc Suppl 8, 325332.Google ScholarPubMed
Pålsgård, E., Roomans, G. & Lindh, U. (1995). Ion dynamics in cells—Preparation for studies of intracellular processes. Nucl Instrum Methods B 104, 324327.CrossRefGoogle Scholar
Prasad, A.S. (1985). Clinical, endocrinologic, and biochemical effects of zinc deficiency. Spec Top Endocrinol Metab 7, 4576.Google ScholarPubMed
Quarterman, J., Mills, C.F. & Humphries, W.R. (1966). The reduced secretion of, and sensitivity to insulin in zinc-deficient rats. Biochem Biophys Res Commun 25, 354358.CrossRefGoogle ScholarPubMed
Reid, G.M. (1981). The pharmacological role of zinc: Evidence from clinical studies on animals. Med Hypotheses 7, 207215.CrossRefGoogle ScholarPubMed
Ren, M.Q., van Kan, J.A., Bettiol, A.A., Daina, L., Gek, C.Y., Huat, B.B., Whitlow, H.J., Osipowicz, T. & Watt, F. (2007). Nano-imaging of single cells using STIM. Nucl Instrum Methods B 260, 124129.Google Scholar
Roth, H.P. & Kirchgessner, M. (1981). Zinc and insulin metabolism. Biol Trace Elem Res 3, 1332.CrossRefGoogle ScholarPubMed
Scott, D.A. (1934). Crystalline insulin. Biochem J 28, 15921602.CrossRefGoogle ScholarPubMed
Valdeolmillos, M., Nadal, A., Contreras, D. & Soria, B. (1992). The relationship between glucose-induced K+ATP channel closure and the rise in [Ca2+]i in single mouse pancreatic β-cells. J Physiol 455, 173186.CrossRefGoogle ScholarPubMed
Watt, F. & Grime, G.W. (1995). The high-energy ion microprobe. In Particle-Induced X-Ray Emission Spectrometry (PIXE), Johansson, S.A.E., Campbell, J.L. & MalmQvist, K.G. (Eds.), pp. 101165, Chemical Analysis Series, Vol. 133. New York: John Wiley & Sons, Inc.Google Scholar
Watt, F., Orlic, I., Loh, K.K., Sow, C.H., Thong, P., Liew, S.C., Osipowicz, T., Choo, T.F. & Tang, S.M. (1994). The National University of Singapore nuclear microscope facility. Nucl Instrum Methods B 85, 708715.CrossRefGoogle Scholar
Woolson, R.F. (1987). Statistical Methods for the Analysis of Biomedical Data. New York: John Wiley & Sons.Google Scholar
Zalewski, P., Millard, S., Forbes, I., Kapaniris, O., Slavotinek, S., Betts, W., Ward, A., Lincoln, S. & Mahadevan, I. (1994). Video image analysis of labile Zn in viable pancreatic islet cells using specific fluorescent probe for Zn. J Histochem Cytochem 42, 877884.CrossRefGoogle Scholar