Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T05:05:29.241Z Has data issue: false hasContentIssue false

Use of the Distance Transform for Integration of Local Measurements: Principle and Application in Chemical Engineering

Published online by Cambridge University Press:  16 February 2016

Loïc Sorbier*
Affiliation:
IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
Frédéric Bazer-Bachi
Affiliation:
IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
Yannick Blouët
Affiliation:
IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
Maxime Moreaud
Affiliation:
IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
Virginie Moizan-Basle
Affiliation:
IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
*
*Corresponding author. loic.sorbier@ifpen.fr
Get access

Abstract

We propose an original methodology to integrate local measurement for nontrivial object shape. The method employs the distance transform of the object and least-square fitting of numerically computed weighting functions extracted from it. The method is exemplified in the field of chemical engineering by calculating the global metal concentration in catalyst grains from uneven metal distribution profiles. Applying the methodology on synthetic profiles with the help of a very simple deposition model allows us to evaluate the accuracy of the method. For high symmetry objects such as an infinite cylinder, relative errors on global concentration are lower than 1% for well-resolved profiles. For a less symmetrical object, a tetralobe, the best estimator gives a relative error below 5% at the cost of increased measurement time. Applicability on a real case is demonstrated on an aged hydrodemetallation catalyst. Sampling of catalyst grains at the inlet and outlet of the reactor allowed conclusions concerning different reactivity for the trapped metals.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, R. & Wei, J. (1984). Hydrodemetallation of nickel and vanadium porphyrins. 2. Intraparticle diffusion. Ind Eng Chem Process Des Dev 23, 515522.CrossRefGoogle Scholar
Bischoff, K. (1965). Effectiveness factors for general reaction rate forms. AIChE J 11, 351355.CrossRefGoogle Scholar
Callejas, M., Martínez, M., Fierro, J. Rial, C. Jiménez-Mateos, J. & Gómez-García, F. (2001). Structural and morphological study of metal deposition on an aged hydrotreating catalyst. Appl Catal A 220, 93104.CrossRefGoogle Scholar
Davis, M. & Davis, R. (2012). Fundamentals of Chemical Reaction Engineering. New York: Courier Dover Publications.Google Scholar
Fabbri, R., Costa, L., Torelli, J. & Bruno, O. (2008). 2D Euclidean distance transform algorithms: A comparative survey. ACM Comput Surv 40, 144.CrossRefGoogle Scholar
Furimsky, E. & Massoth, F. (1999). Deactivation of hydroprocessing catalysts. Catal Today 52, 381495.CrossRefGoogle Scholar
Gauvin, R. & Lifshin, E. (2000). Simulation of X-ray emission from rough surfaces. Mikrochim Acta 132, 201204.CrossRefGoogle Scholar
Marafi, A., Hauser, A. & Stanislaus, A. (2007). Deactivation patterns of Mo/Al2O3, Ni−Mo/Al2O3 and Ni−MoP/Al2O3 catalysts in atmospheric residue hydrodesulphurization. Catal Today 125, 192202.CrossRefGoogle Scholar
Merdrignac, I., Roy-Auberger, M., Guillaume, D. & Verstraete, J. (2013). Hydroprocessing and hydroconversion of residue fractions. In Catalysis by Transition Metal Sulphides, Toulhoat, H. & Raybaud, P. (Eds.), pp. 679737. Paris: Editions Technip.Google Scholar
Rosenfeld, A. & Pfaltz, J. (1966). Sequential operations in digital picture processing. J ACM 13 471494.CrossRefGoogle Scholar
Sorbier, L. (2013). Determining the distribution of metals by electron probe micro analysis. In Catalysis by Transition Metal Sulphides, Toulhoat, H. & Raybaud, P. (Eds.), pp. 407411. Paris: Editions Technip.Google Scholar
Sorbier, L., Gay, A.S., Fécant, A., Moreaud, M. & Brodusch, N. (2012). Measurement of palladium crust thickness on catalyst by EPMA. IOP Conf Ser Mater Sci Eng 32, 012023.CrossRefGoogle Scholar
Sorbier, L., Rosenberg, E. & Merlet, C. (2001). Monte Carlo simulations of rough and porous alumina. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Kling, A., Barao, F., Nakagawa, M., Tavora, L. & Vaz, P. (Eds.), pp. 389394. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sorbier, L., Rosenberg, E. & Merlet, C. (2004). Microanalysis of porous materials. Microsc Microanal 10, 745752.CrossRefGoogle ScholarPubMed
Tamm, P., Harnsberger, H. & Bridge, A. (1981). Effects of feed metals on catalyst aging in hydroprocessing residuum. Ind Eng Chem Process Des Dev 20, 262273.CrossRefGoogle Scholar
Toulhoat, H., Szymanski, R. & Plumail, J.C. (1990). Interrelations between initial pore structure, morphology and distribution of accumulated deposits, and lifetimes of hydrodemetallisation catalysts. Catal Today 7, 531568.CrossRefGoogle Scholar