Skip to main content Accessibility help

Two-Color, Two-Photon Imaging at Long Excitation Wavelengths Using a Diamond Raman Laser

  • Johanna Trägårdh (a1), Michelle Murtagh (a1) (a2), Gillian Robb (a1), Maddy Parsons (a3), Jipeng Lin (a2), David J. Spence (a2) and Gail McConnell (a1)...


We demonstrate that the second-Stokes output from a diamond Raman laser, pumped by a femtosecond Ti:Sapphire laser, can be used to efficiently excite red-emitting dyes by two-photon excitation at 1,080 nm and beyond. We image HeLa cells expressing red fluorescent protein, as well as dyes such as Texas Red and Mitotracker Red. We demonstrate the potential for simultaneous two-color, two-photon imaging with this laser by using the residual pump beam for excitation of a green-emitting dye. We demonstrate this for the combination of Alexa Fluor 488 and Alexa Fluor 568. Because the Raman laser extends the wavelength range of the Ti:Sapphire laser, resulting in a laser system tunable to 680–1,200 nm, it can be used for two-photon excitation of a large variety and combination of dyes.


Corresponding author

* Corresponding author.


Hide All
Anderson, R.R. & Parrish, J.A. (1981). The optics of human skin. J Invest Dermatol 77, 1319.
Bradley, D.J., Hutchinson, M.H.R., Koetser, H., Morrow, G., New, G.H.C. & Petty, M.S. (1972). Interactions of picosecond laser pulses with organic molecules. I. two-photon fluorescence quenching and singlet states excitation in rhodamine dyes. Proc R Soc Lond A 328, 97121.
Brenner, M.H., Cai, D., Swanson, J.A. & Ogilvie, J.P. (2013). Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser. Opt Express 21, 1725617264.
Butko, M.T., Drobizhev, M., Makarov, N.S., Rebane, A., Brinkman, B.C. & Gleeson, J.G. (2011). Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity. BMC Biotechnol 11, 20.
Chu, S.W., Chen, I.H., Liu, T.M., Chen, P.C., Sun, C.K. & Lin, B.L. (2001). Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt Lett 26, 19091911.
Churin, D., Olson, J., Norwood, R.A., Peyghambarian, N. & Kieu, K. (2015). High-power synchronously pumped femtosecond Raman fiber laser. Opt Lett 40, 25292532.
Drobizhev, M., Makarov, N.S., Tillo, S.E., Hughes, T.E. & Rebane, A. (2011). Two-photon absorption properties of fluorescent proteins. Nat Methods 8, 393399.
Horton, N.G., Wang, K., Kobat, D., Clark, C.G., Wise, F.W., Schaffer, C.B. & Xu, C. (2013). In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photon 7, 205209.
Jayo, A., Parsons, M. & Adams, J.C. (2012). A novel rho-dependent pathway that drives interaction of fascin-1 with p-Lin-11/Isl-1/Mec-3 kinase (LIMK) 1/2 to promote fascin-1/actin binding and filopodia stability. BMC Biol 10, 72.
Kobat, D., Durst, M.E., Nishimura, N., Wong, A.W., Schaffer, C.B. & Xu, C. (2009). Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 17, 1335413364.
Lin, J. & Spence, D.J. (2016). 25.5 fs dissipative-soliton diamond Raman laser. Opt Lett 41, 18611864.
Linnenbank, H. & Linden, S. (2014). High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR. Opt Express 22, 1807218077.
Mahou, P., Zimmerley, M., Loulier, K., Matho, K.S., Labroille, G., Morin, X., Supatto, W., Livet, J., Débarre, D. & Beaurepaire, E. (2012). Multicolor two-photon tissue imaging by wavelength mixing. Nat Methods 9, 815818.
Murtagh, M., Lin, J., Mildren, R.P., McConnell, G. & Spence, D.J. (2015a). Efficient diamond Raman laser generating 65 fs pulses. Opt Express 23, 1550415513.
Murtagh, M., Lin, J., Trägårdh, J., Mcconnell, G. & Spence, D.J. (2015b). Ultrafast second-Stokes diamond Raman laser. Opt Express 24, 81498155.
Sun, C.K., Chu, S.W., Chen, S.Y., Tsai, T.H., Liu, T.M., Lin, C.Y. & Tsai, H.J. (2004). Higher harmonic generation microscopy for developmental biology. J Struct Biol 147, 1930.
Tillo, S.E., Hughes, T.E., Makarov, N.S., Rebane, A. & Drobizhev, M. (2010). A new approach to dual-color two-photon microscopy with fluorescent proteins. BMC Biotechnol. 10, 6.
Trägårdh, J., Robb, G., Amor, R., Amos, W.B., Dempster, J. & McConnell, G. (2015). Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser. J Microsc 259, 210218.
Xu, C. & Webb, W.W. (1996). Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13, 481491.
Xu, C., Zipfel, W., Shear, J.B., Williams, R.M. & Webb, W.W. (1996). Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93, 1076310768.
Yamanaka, M., Saito, K., Smith, N.I., Arai, Y., Uegaki, K., Yonemaru, Y., Mochizuki, K., Kawata, S., Nagai, T. & Fujita, K. (2015). Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging. J Biomed Opt 20, 101202.
Zipfel, W.R., Williams, R.M. & Webb, W.W. (2003). Nonlinear magic: Multiphoton microscopy in the biosciences. Nat Biotechnol 21, 13691377.


Related content

Powered by UNSILO

Two-Color, Two-Photon Imaging at Long Excitation Wavelengths Using a Diamond Raman Laser

  • Johanna Trägårdh (a1), Michelle Murtagh (a1) (a2), Gillian Robb (a1), Maddy Parsons (a3), Jipeng Lin (a2), David J. Spence (a2) and Gail McConnell (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.